• Adams, D. K., and et al. , 2015: The Amazon dense GNSS meteorological network: A new approach for examining water vapor and deep convection interactions in the tropics. Bull. Amer. Meteor. Soc., 96, 21512165, https://doi.org/10.1175/BAMS-D-13-00171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alcântara, C. R., M. A. S. Dias, E. P. Souza, and J. C. Cohen, 2011: Verification of the role of the low level jets in Amazon squall lines. Atmos. Res., 100, 3644, https://doi.org/10.1016/j.atmosres.2010.12.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., and J. Paegle, 1970: Diurnal variations in boundary layer winds over the south-central United States in summer. Mon. Wea. Rev., 98, 735744, https://doi.org/10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., Z. Feng, S. M. Hagos, J. Fast, L. A. T. Machado, and S. T. Martin, 2016: Spatial variability of the background diurnal cycle of deep convection around the GoAmazon2014/5 field campaign sites. J. Appl. Meteor. Climatol., 55, 15791598, https://doi.org/10.1175/JAMC-D-15-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carneiro, R. G., and G. Fisch, 2020: Observational analysis of the daily cycle of the planetary boundary layer in the central Amazon during a non-El Niño year and El Niño year (GoAmazon project 2014/5). Atmos. Chem. Phys., 20, 55475558, https://doi.org/10.5194/acp-20-5547-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in realation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. C. P., 1989: Um estudo observacional de linhas de instabiblidade na Amazônia. Ph.D. thesis, National Institute for Space Research, 160 pp.

  • Cohen, J. C. P., M. A. Silva Dias, and C. A. Nobre, 1995: Environmental conditions associated with Amazonian squall lines: A case study. Mon. Wea. Rev., 123, 31633174, https://doi.org/10.1175/1520-0493(1995)123<3163:ECAWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalu, G. A., and R. A. Pielke, 1989: An analytical study of the sea breeze. J. Atmos. Sci., 46, 18151825, https://doi.org/10.1175/1520-0469(1989)046<1815:AASOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Oliveira, A. P., and D. R. Fitzjarrald, 1993: The Amazon River breeze and the local boundary layer: I. Observations. Bound.-Layer Meteor., 63, 141162, https://doi.org/10.1007/BF00705380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 36743683, https://doi.org/10.1175/JAS-D-14-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, M. A., V. E. Kousky, and C. F. Ropelewski, 2004: The South America monsoon circulation and its relationship to rainfall over west-central Brazil. J. Climate, 17, 4766, https://doi.org/10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandu, A. W., and P. L. Silva Dias, 1998: Impact of tropical heat sources on the South American tropospheric upper circulation and subsidence. J. Geophys. Res., 103, 60016015, https://doi.org/10.1029/97JD03114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R., and J. M. Wallace, 1997: The diurnal march of convective cloudiness over the Americas. Mon. Wea. Rev., 125, 31573171, https://doi.org/10.1175/1520-0493(1997)125<3157:TDMOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., H. L. Massie Jr., J. Halverson, S. Greco, and J. Scala, 1994: Amazon coastal squall lines. Part I: Structure and kinematics. Mon. Wea. Rev., 122, 608622, https://doi.org/10.1175/1520-0493(1994)122<0608:ACSLPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greco, S., S. Ulanski, M. Garstang, and S. Houston, 1992: Low-level nocturnal wind maximum over the central Amazon basin. Bound.-Layer Meteor., 58, 91115, https://doi.org/10.1007/BF00120753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., T. Rickenbach, B. Roy, H. Pierce, and E. Williams, 2002: Environmental characteristics of convective systems during TRMM-LBA. Mon. Wea. Rev., 130, 14931509, https://doi.org/10.1175/1520-0493(2002)130<1493:ECOCSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 200205, https://doi.org/10.3402/tellusa.v19i2.9766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Itterly, K. F., P. C. Taylor, and J. B. Dodson, 2018: Sensitivity of the Amazonian convective diurnal cycle to its environment in observations and reanalysis. J. Geophys. Res. Atmos., 123, 12 62112 646, https://doi.org/10.1029/2018JD029251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., N.-C. Lau, I. M. Held, and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64, 532547, https://doi.org/10.1175/JAS3847.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., 1980: Diurnal rainfall variation in Northeast Brazil. Mon. Wea. Rev., 108, 488498, https://doi.org/10.1175/1520-0493(1980)108<0488:DRVINB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., and M. A. Gan, 1981: Upper tropospheric cyclonic vortices in the tropical South Atlantic. Tellus, 33, 538551, https://doi.org/10.3402/tellusa.v33i6.10775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., and M. T. Kagano, 1981: A climatological study of the trospospheric circulation over the Amazon region. Acta Amazonica, 11, 743758, https://doi.org/10.1590/1809-43921981114743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. Rossow, R. Guedes, and A. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, https://doi.org/10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and et al. , 2014: The CHUVA project: How does convection vary across Brazil? Bull. Amer. Meteor. Soc., 95, 13651380, https://doi.org/10.1175/BAMS-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, https://doi.org/10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., M. W. Douglas, and P. L. Silva Dias, 2002: The South American low-level jet east of the Andes during the 1999 LBA-TRMM and LBA-WET AMC campaign. J. Geophys. Res., 107, 8079, https://doi.org/10.1029/2001JD001188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., W. R. Soares, C. Saulo, and M. Nicolini, 2004: Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability. J. Climate, 17, 22612280, https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and et al. , 2016: Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys., 16, 47854797, https://doi.org/10.5194/acp-16-4785-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathon, V., and H. Laurent, 2001: Life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127, 377406, https://doi.org/10.1002/qj.49712757208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molion, L. C. B., and V. E. Kousky, 1985: Climatologia da dinâmica da troposfera sobre a Amazônia. INPE Tech. Rep. INPE-3560-RPE/480, INPE, São José dos Campos, São Paulo, 28 pp.

  • Monaghan, A. J., D. L. Rife, J. O. Pinto, C. A. Davis, and J. Hannan, 2010: Global precipitation extremes associated with diurnally varying low-level jets. J. Climate, 23, 50655084, https://doi.org/10.1175/2010JCLI3515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819850, https://doi.org/10.1002/qj.49711850703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538, https://doi.org/10.1175/1520-0469(2004)061<1521:AROTLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negri, A. J., R. F. Adler, E. J. Nelkin, and G. J. Huffman, 1994: Regional rainfall climatologies derived from Special Sensor Microwave Imager (SSM/I) data. Bull. Amer. Meteor. Soc., 75, 11651182, https://doi.org/10.1175/1520-0477(1994)075<1165:RRCDFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1973: Trapeze instability as a source of internal gravity waves. Part I. J. Atmos. Sci., 30, 10071016, https://doi.org/10.1175/1520-0469(1973)030<1007:TIAASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paegle, J., M. McCorcle, and E. Miller, 1984: Diagnoses and numerical simulation of a low-level jet during ALPEX. Beitr. Phys. Atmos., 57, 419430.

    • Search Google Scholar
    • Export Citation
  • Planchon, O., F. Damato, V. Dubreuil, and P. Gouéry, 2006: A method of identifying and locating sea-breeze fronts in north-eastern Brazil by remote sensing. Meteor. Appl., 13, 225234, https://doi.org/10.1017/S1350482706002283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., 2004: Nocturnal cloud systems and the diurnal variation of clouds and rainfall in southwestern Amazonia. Mon. Wea. Rev., 132, 12011219, https://doi.org/10.1175/1520-0493(2004)132<1201:NCSATD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 50415064, https://doi.org/10.1175/2010JCLI3514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1983: On the linear theory of the land and sea breeze. J. Atmos. Sci., 40, 19992009, https://doi.org/10.1175/1520-0469(1983)040<1999:OTLTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., and R. N. Ferreira, 1992: Application of a linear spectral model to the study of Amazonian squall lines during GTE/ABLE 2B. J. Geophys. Res., 97, 20 40520 419, https://doi.org/10.1029/92JD01333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souza, D. C., and M. D. Oyama, 2017: Breeze potential along the Brazilian northern and northeastern coast. J. Aerosp. Technol. Manage., 9, 368378, https://doi.org/10.5028/jatm.v9i3.787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W.-Y., and I. Orlanski, 1981: Large mesoscale convection and sea breeze circulation. Part I: Linear stability analysis. J. Atmos. Sci., 38, 16751693, https://doi.org/10.1175/1520-0469(1981)038<1675:LMCASB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and G. N. Kiladis, 2012: Squall lines and convectively coupled gravity waves in the tropics: Why do most cloud systems propagate westward? J. Atmos. Sci., 69, 29953012, https://doi.org/10.1175/JAS-D-11-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613, https://doi.org/10.1029/JD092iD08p09591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and et al. , 2006: The South American low-level jet experiment. Bull. Amer. Meteor. Soc., 87, 6378, https://doi.org/10.1175/BAMS-87-1-63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vila, D. A., L. A. T. Machado, H. Laurent, and I. Velasco, 2008: Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Wea. Forecasting, 23, 233245, https://doi.org/10.1175/2007WAF2006121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virji, H., 1981: A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds. Mon. Wea. Rev., 109, 599610, https://doi.org/10.1175/1520-0493(1981)109<0599:APSOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, M., and R. A. Houze Jr., 1987: Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505519, https://doi.org/10.1175/1520-0493(1987)115<0505:SOCOWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodley, W. L., C. G. Griffith, J. S. Griffin, and S. C. Stromatt, 1980: The inference of GATE convective rainfall from SMS-1 imagery. J. Appl. Meteor., 19, 388408, https://doi.org/10.1175/1520-0450(1980)019<0388:TIOGCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 365 365 46
Full Text Views 54 54 16
PDF Downloads 78 78 15

The Amazonian Low-Level Jet and Its Connection to Convective Cloud Propagation and Evolution

View More View Less
  • 1 Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, Cachoeira Paulista, São Paulo, Brazil
  • | 2 Texas A&M University, College Station, Texas
  • | 3 Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, Cachoeira Paulista, São Paulo, Brazil, and Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
© Get Permissions
Restricted access

Abstract

We describe the existence of an Amazonian low-level jet (ALLJ) that can affect the propagation and life cycle of convective systems from the northeast coast of South America into central Amazonia. Horizontal winds from reanalysis were analyzed during March–April–May (MAM) of the two years (2014–15) of the GoAmazon2014/5 field campaign. Convective system tracking was performed using GOES-13 infrared imagery and classified into days with high and weak convective activity. The MAM average winds show a nocturnal enhancement of low-level winds starting near the coast in the early evening and reaching 1600 km inland by late morning. Mean 3-hourly wind speeds maximize at 9–10 m s−1 near 900 hPa, but individual days can have nighttime low-level winds exceeding 12 m s−1. Based on objective low-level wind criteria, the ALLJ is present 10%–40% of the time over the Amazon during MAM depending on the location and time of day. The evolution of the ALLJ across the Amazon impacts the frequency of occurrence of cloud clusters and the intensity of the moisture flux. In addition, the ALLJ is associated with the enhancement of northeasterly flow in the midtroposphere during active convective days, when vertical momentum transport may be occurring in the organized cloud clusters. During the weakly active convective period, the ALLJ is weaker near the coast but stronger across the central Amazon and appears to be linked more directly with the South American low-level jet.

Corresponding author: Evandro M. Anselmo, edromzans@pm.me

Abstract

We describe the existence of an Amazonian low-level jet (ALLJ) that can affect the propagation and life cycle of convective systems from the northeast coast of South America into central Amazonia. Horizontal winds from reanalysis were analyzed during March–April–May (MAM) of the two years (2014–15) of the GoAmazon2014/5 field campaign. Convective system tracking was performed using GOES-13 infrared imagery and classified into days with high and weak convective activity. The MAM average winds show a nocturnal enhancement of low-level winds starting near the coast in the early evening and reaching 1600 km inland by late morning. Mean 3-hourly wind speeds maximize at 9–10 m s−1 near 900 hPa, but individual days can have nighttime low-level winds exceeding 12 m s−1. Based on objective low-level wind criteria, the ALLJ is present 10%–40% of the time over the Amazon during MAM depending on the location and time of day. The evolution of the ALLJ across the Amazon impacts the frequency of occurrence of cloud clusters and the intensity of the moisture flux. In addition, the ALLJ is associated with the enhancement of northeasterly flow in the midtroposphere during active convective days, when vertical momentum transport may be occurring in the organized cloud clusters. During the weakly active convective period, the ALLJ is weaker near the coast but stronger across the central Amazon and appears to be linked more directly with the South American low-level jet.

Corresponding author: Evandro M. Anselmo, edromzans@pm.me
Save