• Achenbach, E., 1972: Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech., 54, 565575, https://doi.org/10.1017/S0022112072000874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570573, https://doi.org/10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, https://doi.org/10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1970: Some aspects of a severe, right-moving thunderstorm deduced from mesonetwork rawinsonde observations. J. Atmos. Sci., 27, 634648, https://doi.org/10.1175/1520-0469(1970)027<0634:SAOASR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul, G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas, storm of 7 May 1986. Mon. Wea. Rev., 116, 17901804, https://doi.org/10.1175/1520-0493(1988)116<1790:MSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul, G. P. Byrd, G. R. Woodall, G. Martin, S. Keighton, and L. C. Showell, 1989: Mobile sounding observations of a thunderstorm near the dryline: The Gruver, Texas, storm complex of 25 May 1987. Mon. Wea. Rev., 117, 244250, https://doi.org/10.1175/1520-0493(1989)117<0244:MSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, O., P. Tabary, and J. Parent du Châtelet, 2008: Operational multiple-Doppler wind retrieval inferred from long-range radial velocity measurements. J. Appl. Meteor. Climatol., 47, 29292945, https://doi.org/10.1175/2008JAMC1878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and F. H. Ludlam, 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117135, https://doi.org/10.1002/qj.49708837602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499533, https://doi.org/10.1002/qj.49710243303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunkow, D., V. N. Bringi, P. C. Kennedy, S. A. Rutledge, V. Chandrasekar, E. A. Mueller, and R. K. Bowie, 2000: A description of the CSU–CHILL national radar facility. J. Atmos. Oceanic Technol., 17, 15961608, https://doi.org/10.1175/1520-0426(2000)017<1596:ADOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2008: getcape. Accessed 1 July 2019, https://www2.mmm.ucar.edu/people/bryan/Code/getcape.F.

  • Chisholm, A. J., 1970: Alberta hailstorms: A radar study and model. Ph.D. thesis, McGill University, 237 pp.

  • Chisholm, A. J., 1973: Alberta hailstorms Part I: Radar case studies and airflow models. Alberta Hailstorms, Meteor. Monogr., No. 36, Amer. Meteor. Soc., 1–36.

    • Crossref
    • Export Citation
  • Collis, S., A. Protat, and K.-S. Chung, 2010: The effect of radial velocity gridding artifacts on variationally retrieved vertical velocities. J. Atmos. Oceanic Technol., 27, 12391246, https://doi.org/10.1175/2010JTECHA1402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, N. A., A. Shapiro, C. K. Potvin, A. Theisen, J. G. Gebauer, A. D. Schenkman, and M. Xue, 2019: High-resolution, rapid-scan dual-Doppler retrievals of vertical velocity in a simulated supercell. J. Atmos. Oceanic Technol., 36, 14771500, https://doi.org/10.1175/JTECH-D-18-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1974: Discussion of measurements inside high-speed thunderstorm updrafts. J. Appl. Meteor., 13, 710717, https://doi.org/10.1175/1520-0450(1974)013<0710:DOMIHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., and J. H. Henderson, 1975: Updraft properties deduced statistically from Rawin soundings. Pure Appl. Geophys., 113, 787801, https://doi.org/10.1007/BF01592959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiGangi, E. A., D. R. MacGorman, C. L. Ziegler, D. Betten, M. Biggerstaff, M. Bowlan, and C. K. Potvin, 2016: An overview of the 29 May 2012 Kingfisher supercell during DC3. J. Geophys. Res. Atmos., 121, 14 31614 343, https://doi.org/10.1002/2016JD025690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2010: Using CASA IP1 to diagnose kinematic and microphysical interactions in a convective storm. Mon. Wea. Rev., 138, 16131634, https://doi.org/10.1175/2009MWR3016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and et al. , 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farley, R. E., 2005: BalloonAscent: 3-D simulation tool for the ascent and float of high-altitude balloons. AIAA Fifth Aviation, Technology, Integration, and Operations Conf., Reston, VA, AIAA, 15 pp.

    • Crossref
    • Export Citation
  • Foote, G. B., and J. C. Fankhauser, 1973: Airflow and moisture budget beneath a northeast Colorado hailstorm. J. Appl. Meteor., 12, 13301353, https://doi.org/10.1175/1520-0450(1973)012<1330:AAMBBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587606, https://doi.org/10.1175/1520-0493(1978)106<0587:AMFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallice, A., F. G. Wienhold, C. R. Hoyle, F. Immler, and T. Peter, 2011: Modeling the ascent of sounding balloons: Derivation of the vertical air motion. Atmos. Meas. Tech., 4, 22352253, https://doi.org/10.5194/amt-4-2235-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142, https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and et al. , 2018: Recommendations for in situ and remote sensing capabilities in atmospheric convection and turbulence. Bull. Amer. Meteor. Soc., 99, 24632470, https://doi.org/10.1175/BAMS-D-17-0310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilman, D. L., F. J. Fuglister, and J. M. Mitchell, 1963: On the power spectrum of “red noise.” J. Atmos. Sci., 20, 182184, https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and D. J. Musil, 1982: Case study of a hailstorm in Colorado. Part II: Particle growth processes at mid-levels deduced from in-situ measurements. J. Atmos. Sci., 39, 28472866, https://doi.org/10.1175/1520-0469(1982)039<2847:CSOAHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • InterMet Systems, 2016: iMet-1-ABxn data sheet. Grand Rapids Michigan, 1 pp., https://www.intermetsystems.com/ee/pdf/202060_iMet-1-ABxn_Data_161006.pdf.

  • Kropfli, R. A., and L. J. Miller, 1976: Kinematic structure and flux quantities in a convective storm from dual-Doppler radar observations. J. Atmos. Sci., 33, 520529, https://doi.org/10.1175/1520-0469(1976)033<0520:KSAFQI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmiller, G. S., H. B. Bluestein, P. J. Neiman, F. M. Ralph, and W. F. Feltz, 2001: Wind structure in a supercell thunderstorm as measured by a UHF wind profiler. Mon. Wea. Rev., 129, 19681986, https://doi.org/10.1175/1520-0493(2001)129<1968:WSIAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marinescu, P. J., S. C. van den Heever, S. M. Saleeby, and S. M. Kreidenweis, 2016: The microphysical contributions to and evolution of latent heating profiles in two MC3E MCSs. J. Geophys. Res. Atmos., 121, 79137935, https://doi.org/10.1002/2016JD024762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marinescu, P. J., E. J. T. Levin, D. Collins, S. M. Kreidenweis, and S. C. van den Heever, 2019: Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA. Atmos. Chem. Phys., 19, 11 98512 006, https://doi.org/10.5194/acp-19-11985-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. P. Richardson, S. J. Richardson, and A. Petersson, 2018: Aboveground thermodynamic observations in convective storms from balloonborne probes acting as pseudo-Lagrangian drifters. Bull. Amer. Meteor. Soc., 99, 711724, https://doi.org/10.1175/BAMS-D-17-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., W. D. Rust, and M. Stolzenburg, 1995: Electrical structure and updraft speeds in thunderstorms over the southern Great Plains. J. Geophys. Res., 100, 10011015, https://doi.org/10.1029/94JD02607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part I: Supercell storms. J. Appl. Meteor., 11, 166179, https://doi.org/10.1175/1520-0450(1972)011<0166:TSAMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1973: Trajectories within the weak echo regions of hailstorms. J. Appl. Meteor., 12, 11741182, https://doi.org/10.1175/1520-0450(1973)012<1174:TWTWER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., and E. X. Berry, 1971: The airflow within the weak echo region of an Alberta hailstorm. J. Appl. Meteor., 10, 487492, https://doi.org/10.1175/1520-0450(1971)010<0487:TAWTWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. J., 1975: Internal airflow of a convective storm from dual-Doppler radar measurements. Pure Appl. Geophys., 113, 765785, https://doi.org/10.1007/BF01592958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. J., and S. M. Fredrick, 1998: CEDRIC custom editing and display of reduced information in Cartesian space. NCAR, 130 pp., https://www.eol.ucar.edu/system/files/cedric_doc.pdf.

  • Mullendore, G. L., D. R. Durran, and J. R. Holton, 2005: Cross-tropopause tracer transport in midlatitude convection. J. Geophys. Res., 110, D06113, https://doi.org/10.1029/2004JD005059.

    • Search Google Scholar
    • Export Citation
  • Musil, D. J., A. J. Heymsfield, and P. L. Smith, 1986: Microphysical characteristics of a well-developed weak echo region in a high plains supercell thunderstorm. J. Climate Appl. Meteor., 25, 10371051, https://doi.org/10.1175/1520-0450(1986)025<1037:MCOAWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Information (NCEI), 2016: NCDC storm events database (storm data). NOAA, accessed 13 February 2020, https://www.ncdc.noaa.gov/stormevents/.

  • National Centers for Environmental Information (NCEI), 2017: NCDC storm events database (storm data). NOAA, accessed 13 February 2020, https://www.ncdc.noaa.gov/stormevents/.

  • Nelson, S. P., and R. A. Brown, 1987: Error sources and accuracy of vertical velocities computed from multiple-Doppler radar measurements in deep convective storms. J. Atmos. Oceanic Technol., 4, 233238, https://doi.org/10.1175/1520-0426(1987)004<0233:ESAAOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 2002: The cubic-spline transform method: Basic definitions and tests in a 1D single domain. Mon. Wea. Rev., 130, 23922415, https://doi.org/10.1175/1520-0493(2002)130<2392:TCSTMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oue, M., P. Kollias, A. Shapiro, A. Tatarevic, and T. Matsui, 2019: Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals. Atmos. Meas. Tech., 12, 19992018, https://doi.org/10.5194/amt-12-1999-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, A. D. F., 1912: The Theory of Measurements. McGraw-Hill, 264 pp.

  • Peters, J. M., C. J. Nowotarski, and H. Morrison, 2019: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., D. Betten, L. J. Wicker, K. L. Elmore, and M. I. Biggerstaff, 2012: 3DVAR versus traditional dual-Doppler wind retrievals of a simulated supercell thunderstorm. Mon. Wea. Rev., 140, 34873494, https://doi.org/10.1175/MWR-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W. S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535, https://doi.org/10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., K. M. Willingham, and C. K. Potvin, 2010: Spatially variable advection correction of radar data. Part II: Test results. J. Atmos. Sci., 67, 34573470, https://doi.org/10.1175/2010JAS3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Söder, J., M. Gerding, A. Schneider, A. Dörnbrack, H. Wilms, J. Wagner, and F. J. Lübken, 2019: Evaluation of wake influence on high-resolution balloon-sonde measurements. Atmos. Meas. Tech., 12, 41914210, https://doi.org/10.5194/amt-12-4191-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, K., J. Choi, W. P. Jeon, and H. Choi, 2010: Effect of free-stream turbulence on the flow over a sphere. Phys. Fluids, 22, 045101, https://doi.org/10.1063/1.3371804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varble, A., and et al. , 2014: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res., 119, 13 89113 918, https://doi.org/10.1002/2013JD021372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Bian, W. O. Brown, H. Cole, V. Grubišić, and K. Young, 2009: Vertical air motion from T-REX radiosonde and dropsonde data. J. Atmos. Oceanic Technol., 26, 928942, https://doi.org/10.1175/2008JTECHA1240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, S., and T. J. Schuur, 2018: On the use of radiosondes in freezing precipitation. J. Atmos. Oceanic Technol., 35, 459472, https://doi.org/10.1175/JTECH-D-17-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 334 334 15
Full Text Views 96 96 8
PDF Downloads 117 117 10

Updraft Vertical Velocity Observations and Uncertainties in High Plains Supercells Using Radiosondes and Radars

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Observations of the air vertical velocities (wair) in supercell updrafts are presented, including uncertainty estimates, from radiosonde GPS measurements in two supercells. These in situ observations were collected during the Colorado State University Convective Cloud Outflows and Updrafts Experiment (C3LOUD-Ex) in moderately unstable environments in Colorado and Wyoming. Based on the radiosonde accelerations, instances when the radiosonde balloon likely bursts within the updraft are determined, and adjustments are made to account for the subsequent reduction in radiosonde buoyancy. Before and after these adjustments, the maximum estimated wair values are 36.2 and 49.9 m s−1, respectively. Radar data are used to contextualize the in situ observations and suggest that most of the radiosonde observations were located several kilometers away from the most intense vertical motions. Therefore, the radiosonde-based wair values presented likely underestimate the maximum values within these storms due to these sampling biases, as well as the impacts from hydrometeors, which are not accounted for. When possible, radiosonde-based wair values were compared to estimates from dual-Doppler methods and from parcel theory. When the radiosondes observed their highest wair values, dual-Doppler methods generally produced 15–20 m s−1 lower wair for the same location, which could be related to the differences in the observing systems’ resolutions. In situ observations within supercell updrafts, which have been limited in recent decades, can be used to improve our understanding and modeling of storm dynamics. This study provides new in situ observations, as well as methods and lessons that could be applied to future field campaigns.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter J. Marinescu, peter.marinescu@colostate.edu

Abstract

Observations of the air vertical velocities (wair) in supercell updrafts are presented, including uncertainty estimates, from radiosonde GPS measurements in two supercells. These in situ observations were collected during the Colorado State University Convective Cloud Outflows and Updrafts Experiment (C3LOUD-Ex) in moderately unstable environments in Colorado and Wyoming. Based on the radiosonde accelerations, instances when the radiosonde balloon likely bursts within the updraft are determined, and adjustments are made to account for the subsequent reduction in radiosonde buoyancy. Before and after these adjustments, the maximum estimated wair values are 36.2 and 49.9 m s−1, respectively. Radar data are used to contextualize the in situ observations and suggest that most of the radiosonde observations were located several kilometers away from the most intense vertical motions. Therefore, the radiosonde-based wair values presented likely underestimate the maximum values within these storms due to these sampling biases, as well as the impacts from hydrometeors, which are not accounted for. When possible, radiosonde-based wair values were compared to estimates from dual-Doppler methods and from parcel theory. When the radiosondes observed their highest wair values, dual-Doppler methods generally produced 15–20 m s−1 lower wair for the same location, which could be related to the differences in the observing systems’ resolutions. In situ observations within supercell updrafts, which have been limited in recent decades, can be used to improve our understanding and modeling of storm dynamics. This study provides new in situ observations, as well as methods and lessons that could be applied to future field campaigns.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter J. Marinescu, peter.marinescu@colostate.edu
Save