• Adams-Selin, R., and R. S. Schumacher, 2019: Observations of low-frequency gravity waves during the PECAN field campaign. 18th Conf. on Mesoscale Processes, Savannah, GA, Amer. Meteor. Soc., 3.5, https://ams.confex.com/ams/18MESO/meetingapp.cgi/Paper/361237.

  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, https://doi.org/10.1023/A:1019992330866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, H., 2004: Satellite wind superobbing. NWPSAF-MO-VS-016, 33 pp., https://www.ssec.wisc.edu/~howardb/Papers/superob_nwpsaf_final.pdf.

  • Blumberg, W. G., T. J. Wagner, D. D. Turner, and J. Correia, 2017: Quantifying the accuracy and uncertainty of diurnal thermodynamic profiles and convection indices derived from the Atmospheric Emitted Radiance Interferometer. J. Appl. Meteor. Climatol., 56, 27472766, https://doi.org/10.1175/JAMC-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burghardt, B. J., C. Evans, and P. J. Roebber, 2014: Assessing the predictability of convection initiation in the high plains using an object-based approach. Wea. Forecasting, 29, 403418, https://doi.org/10.1175/WAF-D-13-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burlingame, B. M., C. Evans, and P. J. Roebber, 2017: The influence of PBL parameterization on the practical predictability of convection initiation during the Mesoscale Predictability Experiment (MPEX). Wea. Forecasting, 32, 11611183, https://doi.org/10.1175/WAF-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calhoun, R., R. Heap, M. Princevac, R. Newsom, H. Fernando, and D. Ligon, 2006: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment. J. Appl. Meteor. Climatol., 45, 11161126, https://doi.org/10.1175/JAM2391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chipilski, H. G., X. Wang, and D. B. Parsons, 2020: Impact of assimilating PECAN profilers on the prediction of bore-driven nocturnal convection: A multiscale forecast evaluation for the 6 July 2015 case study. Mon. Wea. Rev., 148, 11471175, https://doi.org/10.1175/MWR-D-19-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R., 2016: FP3 Ellis, KS radiosonde data, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D6GM85DZ.

    • Crossref
    • Export Citation
  • Coniglio, M. C., S. F. Corfidi, and J. S. Kain, 2011: Environment and early evolution of the 8 May 2009 Derecho-producing convective system. Mon. Wea. Rev., 139, 10831102, https://doi.org/10.1175/2010MWR3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., G. S. Romine, D. D. Turner, and R. D. Torn, 2019: Impacts of targeted AERI and Doppler lidar wind retrievals on short-term forecasts of the initiation and early evolution of thunderstorms. Mon. Wea. Rev., 147, 11491170, https://doi.org/10.1175/MWR-D-18-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, https://doi.org/10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, https://doi.org/10.1175/MWR3146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degelia, S. K., X. Wang, D. J. Stensrud, and A. Johnson, 2018: Understanding the impact of radar and in situ observations on the prediction of a nocturnal convection initiation event on 25 June 2013 using an ensemble-based multiscale data assimilation system. Mon. Wea. Rev., 146, 18371859, https://doi.org/10.1175/MWR-D-17-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degelia, S. K., X. Wang, and D. J. Stensrud, 2019: An evaluation of the impact of assimilating AERI retrievals, kinematic profilers, rawinsondes, and surface observations on a forecast of a nocturnal convection initiation event during the PECAN field campaign. Mon. Wea. Rev., 147, 27392764, https://doi.org/10.1175/MWR-D-18-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., and Coauthors, 2014: NCEP regional ensemble update: Current systems and planned storm-scale ensembles. 26th Conf. on Weather Analysis and Forecasting/22nd Conf. on Numerical Weather Prediction, Atlanta, GA, Amer. Meteor. Soc., J1.4, https://ams.confex.com/ams/94Annual/webprogram/Paper239030.html.

  • Ecklund, W. L., D. A. Carter, and B. B. Balsley, 1988: A UHF wind profiler for the boundary layer: Brief description and initial results. J. Atmos. Oceanic Technol., 5, 432441, https://doi.org/10.1175/1520-0426(1988)005<0432:AUWPFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M., K. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fast, J. D., and Coauthors, 2019: Overview of the HI-SCALE field campaign: A new perspective on shallow convective clouds. Bull. Amer. Meteor. Soc., 100, 821840, https://doi.org/10.1175/BAMS-D-18-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., W. L. Smith, H. B. Howell, R. O. Knuteson, H. Woolf, and H. E. Revercomb, 2003: Near-continuous profiling of temperature, moisture, and atmospheric stability using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42, 584597, https://doi.org/10.1175/1520-0450(2003)042<0584:NPOTMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gero, J., H. Revercomb, D. Turner, J. Taylor, B. Ermold, K. Gaustad, R. Garcia, and D. Hackel, 2014: Atmospheric Emitted Radiance Interferometer (AERISUMMARY) from Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Atmospheric Radiation Measurement (ARM) Climate Research Facility data archive, accessed 1 June 2019, http://doi.org/10.5439/1025146.

    • Crossref
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2013: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 13, 23 84523 893, https://doi.org/10.5194/acpd-13-23845-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gremillion, M. S., and R. E. Orville, 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14, 640649, https://doi.org/10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanesiak, J., and D. Turner, 2016a: FP3 University of Manitoba Doppler lidar wind profile data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D60863P5.

    • Crossref
    • Export Citation
  • Hanesiak, J., and D. Turner, 2016b: FP6 University of Manitoba Doppler lidar VAD winds data, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D64F1NTN.

    • Crossref
    • Export Citation
  • Hansell, R. A., and Coauthors, 2010: An assessment of the surface longwave direct radiative effect of airborne Saharan dust during the NAMMA field campaign. J. Atmos. Sci., 67, 10481065, https://doi.org/10.1175/2009JAS3257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdridge, D., and D. Turner, 2015: FP6 Hesston, KS radiosonde data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D6765CD0.

    • Crossref
    • Export Citation
  • Hong, S., and J. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hu, J., N. Yussouf, D. D. Turner, T. A. Jones, and X. Wang, 2019: Impact of ground-based remote sensing boundary layer observations on short-term probabilistic forecasts of a tornadic supercell event. Wea. Forecasting, 34, 14531476, https://doi.org/10.1175/WAF-D-18-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, T., and Coauthors, 2018: On the representation error in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 12571278, https://doi.org/10.1002/qj.3130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2017: Design and implementation of a GSI-based convection-allowing ensemble data assimilation and forecast system for the PECAN field experiment. Part I: Optimal configurations for nocturnal convection prediction using retrospective cases. Wea. Forecasting, 32, 289315, https://doi.org/10.1175/WAF-D-16-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2019: Multicase assessment of the impacts of horizontal and vertical grid spacing, and turbulence closure model, on subkilometer-scale simulations of atmospheric bores during PECAN. Mon. Wea. Rev., 147, 15331555, https://doi.org/10.1175/MWR-D-18-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, and S. K. Degelia, 2017: Design and implementation of a GSI-based convection-allowing ensemble-based data assimilation and forecast system for the PECAN field experiment. Part II: Overview and evaluation of a real-time system. Wea. Forecasting, 32, 12271251, https://doi.org/10.1175/WAF-D-16-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, K. R. Haghi, and D. B. Parsons, 2018: Evaluation of forecasts of a convectively generated bore using an intensively observed case study from PECAN. Mon. Wea. Rev., 146, 30973122, https://doi.org/10.1175/MWR-D-18-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, Y. Wang, A. Reinhart, A. J. Clark, and I. L. Jirak, 2020: Neighborhood- and object-based probabilistic verification of the OU MAP ensemble forecasts during 2017 and 2018 Hazardous Weather Testbeds. Wea. Forecasting, 35, 169191, https://doi.org/10.1175/WAF-D-19-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, https://doi.org/10.1175/BAMS-D-11-00264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keclik, A. M., C. Evans, P. J. Roebber, and G. S. Romine, 2017: The influence of assimilated upstream, preconvective dropsonde observations on ensemble forecasts of convection initiation during the Mesoscale Predictability Experiment. Mon. Wea. Rev., 145, 47474770, https://doi.org/10.1175/MWR-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keene, K. M., and R. S. Schumacher, 2013: The bow and arrow mesoscale convective structure. Mon. Wea. Rev., 141, 16481672, https://doi.org/10.1175/MWR-D-12-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., D. Turner, E. Smith, and J. Gebauer, 2016: Mobile PISA 1 OU/NSSL CLAMPS radiosonde data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D6416VDH.

    • Crossref
    • Export Citation
  • Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523537, https://doi.org/10.1175/2008JTECHA1153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, W. J., and M. Xue, 2006: Sensitivity analysis of convection of the 24 May 2002 IHOP case using very large ensembles. Mon. Wea. Rev., 134, 192207, https://doi.org/10.1175/MWR3061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzies, R. T., and R. M. Hardesty, 1989: Coherent Doppler lidar for measurements of wind fields. Proc. IEEE, 77, 449462, https://doi.org/10.1109/5.24130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muradyan, P., 2013: Radar Wind Profiler (915RWPTEMPCON, updated hourly) from Southern Great Plains (SGP) central facility (C1), NW radar wind profiler site (I10), NE radar wind profiler site (I8). Atmospheric radiation measurement (ARM) Climate Research Facility data archive, accessed 1 June 2019, http://doi.org/10.5439/1025131.

    • Crossref
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2009: Observing Weather and Climate from the Ground Up. National Academies Press, 250 pp.

  • Newsom, R., and R. Krishnamurthy, 2014: Doppler Lidar (DLAUX) from Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Atmospheric radiation measurement (ARM) Climate Research Facility data archive, accessed 1 June 2019, http://doi.org/10.5439/1374838.

    • Crossref
    • Export Citation
  • Newsom, R., W. A. Brewer, J. M. Wilczak, D. E. Wolfe, S. P. Oncley, and J. K. Lundquist, 2017: Validating precision estimates in horizontal wind measurements from a Doppler lidar. Atmos. Meas. Tech., 10, 12291240, https://doi.org/10.5194/amt-10-1229-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2015: Warning Decision Training Division (WDTD) virtual lab: MRMS products guide (version 10). Accessed 1 July 2020, https://vlab.ncep.noaa.gov/web/wdtd/mrms-products-guide.

  • O’Connor, E. J., A. J. Illingworth, I. M. Brooks, C. D. Westbrook, R. J. Hogan, F. Davies, and B. J. Brooks, 2010: A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements. J. Atmos. Oceanic Technol., 27, 16521664, https://doi.org/10.1175/2010JTECHA1455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Peters, J. M., E. R. Nielsen, M. D. Parker, S. M. Hitchcock, and R. S. Schumacher, 2017: The impact of low-level moisture errors on model forecasts of an MCS observed during PECAN. Mon. Wea. Rev., 145, 35993624, https://doi.org/10.1175/MWR-D-16-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 145, 16151639, https://doi.org/10.1175/MWR-D-16-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2018: Initiation mechanisms of nocturnal convection without nearby surface boundaries over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 146, 30533078, https://doi.org/10.1175/MWR-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., and Coauthors, 2009: NCEP North American mesoscale modeling system: Recent changes and future plans. 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 2A.4, https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154114.htm.

  • Romine, G. S., C. S. Schwartz, R. D. Torn, and M. L. Weisman, 2016: Impact of assimilating dropsonde observations from MPEX on ensemble forecasts of severe weather events. Mon. Wea. Rev., 144, 37993823, https://doi.org/10.1175/MWR-D-15-0407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satterfield, E., and D. Hodyss, 2017: Investigating the use of ensemble variance to predict observation error of representation. Mon. Wea. Rev., 145, 653667, https://doi.org/10.1175/MWR-D-16-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Fossell, R. A. Sobash, and M. L. Weisman, 2017: Toward 1- km ensemble forecasts over large domains. Mon. Wea. Rev., 145, 29432969, https://doi.org/10.1175/MWR-D-16-0410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sisterson, D. L., R. A. Peppler, T. S. Cress, P. J. Lamb, and D. D. Turner, 2016: The ARM Southern Great Plains (SGP) site. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0004.1.

    • Crossref
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH .

    • Crossref
    • Export Citation
  • Skinner, P. S., L. J. Wicker, D. M. Wheatley, and K. H. Knopfmeier, 2016: Application of two spatial verification methods to ensemble forecasts of low-level rotation. Wea. Forecasting, 31, 713735, https://doi.org/10.1175/WAF-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smalikho, I., F. Köpp, and S. Rahm, 2005: Measurement of atmospheric turbulence by 2-μm Doppler lidar. J. Atmos. Oceanic Technol., 22, 17331747, https://doi.org/10.1175/JTECH1815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. N., J. G. Gebauer, P. M. Klein, E. Fedorovich, and J. A. Gibbs, 2019: The Great Plains low-level jet during PECAN: Observed and simulated characteristics. Mon. Wea. Rev., 147, 18451869, https://doi.org/10.1175/MWR-D-18-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi- Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, 1999: The retrieval of planetary boundary layer structure using ground-based infrared spectral radiance measurements. J. Atmos. Oceanic Technol., 16, 323333, https://doi.org/10.1175/1520-0426(1999)016<0323:TROPBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stalker, J., J. Lasley, G. Frederick, R. McPherson, P. Campbell, B. Philips, and B. Pasken, 2013: A nationwide network of networks. Bull. Amer. Meteor. Soc., 94, 16021606, https://doi.org/10.1175/1520-0477-94.10.1602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stelten, S., and W. A. Gallus, 2017: Pristine nocturnal convective initiation: A climatology and preliminary examination of predictability. Wea. Forecasting, 32, 16131635, https://doi.org/10.1175/WAF-D-16-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137, https://doi.org/10.1007/s00703-001-0594-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toms, B. A., J. M. Tomaszewski, D. D. Turner, and S. E. Koch, 2017: Analysis of a lower-tropospheric gravity wave train using direct and remote sensing measurement systems. Mon. Wea. Rev., 145, 27912812, https://doi.org/10.1175/MWR-D-16-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., S. D. Kehler, and J. Hanesiak, 2020: Observations and simulation of elevated nocturnal convection initiation on 24 June 2015 during PECAN. Mon. Wea. Rev., 148, 613635, https://doi.org/10.1175/MWR-D-19-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D., 2016a: FP3 AERIoe thermodynamic profile retrieval data, version 2.0. UCAR/NCAR–Earth Observation Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D6Z31WV0.

    • Crossref
    • Export Citation
  • Turner, D., 2016b: FP4 AERIoe thermodynamic profile retrieval data, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D6PN93T3.

    • Crossref
    • Export Citation
  • Turner, D., 2016c: FP5 AERIoe thermodynamic profile retrieval data, version 2.0. UCAR/NCAR–Earth Observation Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D61V5C5J.

    • Crossref
    • Export Citation
  • Turner, D., 2016d: FP6 AERIoe thermodynamic profile retrieval data, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D6TD9VH0.

    • Crossref
    • Export Citation
  • Turner, D., 2016e: MP1 OU/NSSL CLAMPS Doppler lidar VAD wind data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D6BR8QJH.

    • Crossref
    • Export Citation
  • Turner, D., 2018: MP1 OU/NSSL CLAMPS AERIoe thermodynamic profile retrieval data, version 1.2. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D6VQ312C.

    • Crossref
    • Export Citation
  • Turner, D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, https://doi.org/10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D., and W. G. Blumberg, 2019: Improvements to the AERIoe thermodynamic profile retrieval algorithm. IEEE Select Topics Appl. Earth Obs. Remote Sens., 12, 13391354, https://doi.org/10.1109/JSTARS.2018.2874968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR, 2015a: FP1 ARM central facility radiosonde data, version 1.0. UCAR/NCAR–Earth Observation Laboratory, accessed 1 June 2019, https://data.eol.ucar.edu/dataset/485.021.

  • UCAR/NCAR, 2015b: FP4 NCAR/EOL 915 MHz profiler NIMA consensus winds and moments, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2018, https://doi.org/10.5065/D6RV0KXH.

    • Crossref
    • Export Citation
  • UCAR/NCAR, 2015c: FP5 NCAR/EOL 915 MHz profiler 30 minute consensus winds and moments data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2018, https://doi.org/10.5065/D6H993DQ.

    • Crossref
    • Export Citation
  • UCAR/NCAR, 2016a: FP4 NCAR/EOL QC soundings, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D63776XH.

    • Crossref
    • Export Citation
  • UCAR/NCAR, 2016b: FP5 NCAR/EOL QC soundings, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D6ZG6QF7.

    • Crossref
    • Export Citation
  • UCAR/NCAR, 2017: FP3 NCAR/EOL 449MHz profiler 30 minute consensus winds data, version 1.0 [PRELIMINARY]. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2018, https://doi.org/10.5065/D66W98T7.

    • Crossref
    • Export Citation
  • Wagner, T., D. Turner, and R. Newsom, 2016a: MP3 University of Wisconsin SPARC Doppler lidar VAD wind data, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D6V9869B.

    • Crossref
    • Export Citation
  • Wagner, T., E. Olson, N. Smith, and W. Feltz, 2016b: MP3 University of Wisconsin SPARC AERIoe thermodynamic profile data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D60Z71HC.

    • Crossref
    • Export Citation
  • Wagner, T., E. Olson, N. Smith, and W. Feltz, 2016c: Mobile PISA 3 UW/SSEC SPARC radiosonde data, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2019, https://doi.org/10.5065/D6VH5M7B.

    • Crossref
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: Single resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma city tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and U. Romatschke, 2019: Where, when, and why did it rain during PECAN? Mon. Wea. Rev., 147, 35573573, https://doi.org/10.1175/MWR-D-18-0458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. Hanesiak, J. W. Wilson, S. B. Trier, S. K. Degelia, W. A. Gallus, R. D. Roberts, and X. Wang, 2019: Nocturnal convection initiation during PECAN 2015. Bull. Amer. Meteor. Soc., 100, 22232239, https://doi.org/10.1175/BAMS-D-18-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the Ensemble Transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, https://doi.org/10.1111/j.1600-0870.2007.00273.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 151 151 53
Full Text Views 62 62 22
PDF Downloads 77 77 33

Systematic Evaluation of the Impact of Assimilating a Network of Ground-Based Remote Sensing Profilers for Forecasts of Nocturnal Convection Initiation during PECAN

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • 2 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • 3 NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Nocturnal convection is often initiated by mechanisms that cannot be easily observed within the large gaps between rawinsondes or by conventional surface networks. To improve forecasts of such events, we evaluate the systematic impact of assimilating a collocated network of high-frequency, ground-based thermodynamic and kinematic profilers collected as part of the 2015 Plains Elevated Convection At Night (PECAN) experiment. For 13 nocturnal convection initiation (CI) events, we find small but consistent improvements when assimilating thermodynamic observations collected by Atmospheric Emitted Radiance Interferometers (AERIs). Through midlevel cooling and moistening, assimilating the AERIs increases the fractions skill score (FSS) for both nocturnal CI and precipitation forecasts. The AERIs also improve various contingency metrics for CI forecasts. Assimilating composite kinematic datasets collected by Doppler lidars and radar wind profilers (RWPs) results in slight degradations to the forecast quality, including decreases in the FSS and traditional contingency metrics. The impacts from assimilating thermodynamic and kinematic profilers often counteract each other, such that we find little impact on the detection of CI when both are assimilated. However, assimilating both datasets improves various properties of the CI events that are successfully detected (timing, distance, shape, etc.). We also find large variability in the impact of assimilating these remote sensing profilers, likely due to the number of observing sites and the strength of the synoptic forcing for each case. We hypothesize that the lack of flow-dependent methods to diagnose observation errors likely contributes to degradations in forecast skill for many cases, especially when assimilating kinematic profilers.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Corresponding author: Samuel K. Degelia, sdegelia@ou.edu

Abstract

Nocturnal convection is often initiated by mechanisms that cannot be easily observed within the large gaps between rawinsondes or by conventional surface networks. To improve forecasts of such events, we evaluate the systematic impact of assimilating a collocated network of high-frequency, ground-based thermodynamic and kinematic profilers collected as part of the 2015 Plains Elevated Convection At Night (PECAN) experiment. For 13 nocturnal convection initiation (CI) events, we find small but consistent improvements when assimilating thermodynamic observations collected by Atmospheric Emitted Radiance Interferometers (AERIs). Through midlevel cooling and moistening, assimilating the AERIs increases the fractions skill score (FSS) for both nocturnal CI and precipitation forecasts. The AERIs also improve various contingency metrics for CI forecasts. Assimilating composite kinematic datasets collected by Doppler lidars and radar wind profilers (RWPs) results in slight degradations to the forecast quality, including decreases in the FSS and traditional contingency metrics. The impacts from assimilating thermodynamic and kinematic profilers often counteract each other, such that we find little impact on the detection of CI when both are assimilated. However, assimilating both datasets improves various properties of the CI events that are successfully detected (timing, distance, shape, etc.). We also find large variability in the impact of assimilating these remote sensing profilers, likely due to the number of observing sites and the strength of the synoptic forcing for each case. We hypothesize that the lack of flow-dependent methods to diagnose observation errors likely contributes to degradations in forecast skill for many cases, especially when assimilating kinematic profilers.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Corresponding author: Samuel K. Degelia, sdegelia@ou.edu
Save