• Bister, M., 2001: Effect of peripheral convection on tropical cyclone formation. J. Atmos. Sci., 58, 34633476, https://doi.org/10.1175/1520-0469(2001)058<3463:EOPCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical model. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009a: The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci., 66, 148158, https://doi.org/10.1175/2008JAS2707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009b: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060, https://doi.org/10.1175/2009JAS3038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Črnivec, N., R. K. Smith, and G. Kilroy, 2016: Dependence of tropical cyclone intensification rate on sea-surface temperature. Quart. J. Roy. Meteor. Soc., 142, 16181627, https://doi.org/10.1002/qj.2752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334, https://doi.org/10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152, https://doi.org/10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2018: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    • Crossref
    • Export Citation
  • Frisius, T., D. Schönemann, and J. Vigh, 2013: The impact of gradient wind imbalance on potential intensity of tropical cyclones in an unbalanced slab boundary layer model. J. Atmos. Sci., 70, 18741890, https://doi.org/10.1175/JAS-D-12-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausman, S. A., 2001: Formulation and sensitivity analysis of a nonhydrostatic, axisymmetric tropical cyclone model. Tech. Rep., Air Force Institute of Technology, Wright-Patterson, OH, 227 pp.

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, and Y. Lin, 2019: Revisiting the dynamics of eyewall contraction of tropical cyclones. J. Atmos. Sci., 76, 32293245, https://doi.org/10.1175/JAS-D-19-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, and Y. Lin, 2020: How much does the upward advection of the supergradient component of boundary layer wind contribute to tropical cyclone intensification and maximum intensity? J. Atmos. Sci., 77, 26492664, https://doi.org/10.1175/JAS-D-19-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2020: Comments on “An evaluation of hurricane superintensity in axisymmetric numerical models.” J. Atmos. Sci., 77, 18871892, https://doi.org/10.1175/JAS-D-19-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 13351348, https://doi.org/10.1175/BAMS-87-10-1335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the intensification of tropical cyclones. J. Atmos. Sci., 75, 21252138, https://doi.org/10.1175/JAS-D-17-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371, https://doi.org/10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2005: Is environmental CAPE important in the determination of maximum possible hurricane intensity? J. Atmos. Sci., 62, 542550, https://doi.org/10.1175/JAS-3370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousseau-Rizzi, R., and K. Emanuel, 2019: An evaluation of hurricane superintensity in axisymmetric numerical models. J. Atmos. Sci., 76, 16971708, https://doi.org/10.1175/JAS-D-18-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousseau-Rizzi, R., and K. Emanuel, 2020: Reply to “Comments on ‘An evaluation of hurricane superintensity in axisymmetric numerical models.’” J. Atmos. Sci., 77, 18931896, https://doi.org/10.1175/JAS-D-19-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 12831306, https://doi.org/10.1175/JAS-D-14-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., and Coauthors, 2017: Impact of ocean warming on tropical cyclone size and its destructiveness. Sci. Rep., 7, 8154, https://doi.org/10.1038/s41598-017-08533-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., K. Emanuel, F. Zhang, R. Rotunno, M. M. Bell, and R. G. Nystrom, 2019: Evaluation of the assumptions in the steady-state tropical cyclone self-stratified outflow using three-dimensional convection-allowing simulations. J. Atmos. Sci., 76, 29953009, https://doi.org/10.1175/JAS-D-19-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tonkin, H., G. J. Holland, N. Holbrook, and A. Henderson-Sellers, 2000: An evaluation of thermodynamic estimates of climatological maximum potential tropical cyclone intensity. Mon. Wea. Rev., 128, 746762, https://doi.org/10.1175/1520-0493(2000)128<0746:AEOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2012: Recent research progress on tropical cyclone structure and intensity. Trop. Cyclone Res. Rev., 1, 254275, https://doi.org/10.6057/2012TCRR02.05.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97116, https://doi.org/10.1175/2009JAS3143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitney, L. D., and J. S. Hobgood, 1997: The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Climate, 10, 29212930, https://doi.org/10.1175/1520-0442(1997)010<2921:TRBSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and L. W. White, 2011: A new parametric model of vortex tangential-wind profiles: Development, testing, and verification. J. Atmos. Sci., 68, 9901006, https://doi.org/10.1175/2011JAS3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, https://doi.org/10.1175/2010JAS3387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2018: Dependence of tropical cyclone intensification rate on sea surface temperature, storm intensity, and size in the western North Pacific. Wea. Forecasting, 33, 523537, https://doi.org/10.1175/WAF-D-17-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., Y. Wang, and C. Yang, 2019: Interbasin differences in the median and variability of tropical cyclone MPI in the Northern Hemisphere. J. Geophys. Res. Atmos., 124, 13 71413 730, https://doi.org/10.1029/2019JD031588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and W. M. Drennan, 2012: An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci., 69, 32233236, https://doi.org/10.1175/JAS-D-11-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and M. T. Montgomery, 2012: Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci., 69, 13061316, https://doi.org/10.1175/JAS-D-11-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 67 67 24
Full Text Views 24 24 12
PDF Downloads 34 34 19

Dependence of Superintensity of Tropical Cyclones on SST in Axisymmetric Numerical Simulations

View More View Less
  • 1 Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
  • 2 Joint Center for Global Change Studies, Tsinghua University, Beijing, China
  • 3 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 4 Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 5 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
© Get Permissions
Restricted access

Abstract

This study revisits the superintensity of tropical cyclones (TCs), which is defined as the excess maximum surface wind speed normalized by the corresponding theoretical maximum potential intensity (MPI), based on ensemble axisymmetric numerical simulations, with the focus on the dependence of superintensity on the prescribed sea surface temperature (SST) and the initial environmental atmospheric sounding. Results show a robust decrease of superintensity with increasing SST regardless of being in experiments with an SST-independent initial atmospheric sounding or in those with the SST-dependent initial atmospheric soundings as in nature sorted for the western North Pacific and the North Atlantic. It is found that the increase in either convective activity (and thus diabatic heating) in the TC outer region or theoretical MPI or both with increasing SST could reduce the superintensity. For a given SST-independent initial atmospheric sounding, the strength of convective activity in the TC outer region increases rapidly with increasing SST due to the rapidly increasing air–sea thermodynamic disequilibrium (and thus potential convective instability) with increasing SST. As a result, the decrease of superintensity with increasing SST in the SST-independent sounding experiments is dominated by the increasing convective activity in the TC outer region and is much larger than that in the SST-dependent sounding experiments, and the TC intensity becomes sub-MPI at relatively high SSTs in the former. Due to the marginal increasing tendency of convective activity in the TC outer region, the decrease of superintensity in the latter is dominated by the increase in theoretical MPI with increasing SST.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuqing Wang, yuqing@hawaii.edu

Abstract

This study revisits the superintensity of tropical cyclones (TCs), which is defined as the excess maximum surface wind speed normalized by the corresponding theoretical maximum potential intensity (MPI), based on ensemble axisymmetric numerical simulations, with the focus on the dependence of superintensity on the prescribed sea surface temperature (SST) and the initial environmental atmospheric sounding. Results show a robust decrease of superintensity with increasing SST regardless of being in experiments with an SST-independent initial atmospheric sounding or in those with the SST-dependent initial atmospheric soundings as in nature sorted for the western North Pacific and the North Atlantic. It is found that the increase in either convective activity (and thus diabatic heating) in the TC outer region or theoretical MPI or both with increasing SST could reduce the superintensity. For a given SST-independent initial atmospheric sounding, the strength of convective activity in the TC outer region increases rapidly with increasing SST due to the rapidly increasing air–sea thermodynamic disequilibrium (and thus potential convective instability) with increasing SST. As a result, the decrease of superintensity with increasing SST in the SST-independent sounding experiments is dominated by the increasing convective activity in the TC outer region and is much larger than that in the SST-dependent sounding experiments, and the TC intensity becomes sub-MPI at relatively high SSTs in the former. Due to the marginal increasing tendency of convective activity in the TC outer region, the decrease of superintensity in the latter is dominated by the increase in theoretical MPI with increasing SST.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuqing Wang, yuqing@hawaii.edu
Save