• Amerault, C., X. Zou, and J. D. Doyle, 2008: Tests of an adjoint mesoscale model with explicit moist physics on the cloud scale. Mon. Wea. Rev., 136, 21202132, https://doi.org/10.1175/2007MWR2259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CW3E, 2018: Atmospheric river reconnaissance—2018 is underway. Accessed 20 March 2019, http://cw3e.ucsd.edu/atmospheric-river-reconnaissance-2018-underway/.

  • Dee, D. P., and A. M. da Silva, 2003: The choice of variable for atmospheric moisture analysis. Mon. Wea. Rev., 131, 155171, https://doi.org/10.1175/1520-0493(2003)131<0155:TCOVFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFlorio, M., D. Waliser, B. Guan, F. M. Ralph, and F. Vitart, 2019: Global evaluation of atmospheric river subseasonal prediction skill. Climate Dyn., 52, 30393060, https://doi.org/10.1007/s00382-018-4309-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, https://doi.org/10.1175/JHM-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. Amerault, C. A. Reynolds, and P. A. Reinecke, 2014: Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint. Mon. Wea. Rev., 142, 320342, https://doi.org/10.1175/MWR-D-13-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. A. Reynolds, and C. Amerault, 2019: Adjoint sensitivity analysis of high-impact extratropical cyclones. Mon. Wea. Rev., 147, 45114532, https://doi.org/10.1175/MWR-D-19-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., 2000: The total energy norm in a quasigeostrophic model. J. Atmos. Sci., 57, 34433451, https://doi.org/10.1175/1520-0469(2000)057<3443:NACTEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Coauthors, 2014: The Navy Global Environmental Model. Oceanography, 27, 116125, https://doi.org/10.5670/oceanog.2014.73.

  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, https://doi.org/10.1175/MWR-D-12-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and N. L. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, https://doi.org/10.3402/TELLUSA.V56I3.14413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., M. J. Rodwell, D. S. Richardson, F. M. Ralph, J. D. Doyle, C. A. Reynolds, V. Tallapragada, and F. Pappenberger, 2018: The gauging and modeling of rivers in the sky. Geophys. Res. Lett., 45, 78287834, https://doi.org/10.1029/2018GL079019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2008: Evaluation of the ensemble transform analysis perturbation scheme at NRL. Mon. Wea. Rev., 136, 10931108, https://doi.org/10.1175/2007MWR2010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2010: A local formulation of the ensemble transform (ET) analysis perturbation scheme. Wea. Forecasting, 25, 985993, https://doi.org/10.1175/2010WAF2222359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/AOC and USAF 53 WRS, 2018: Reconnaissance Data Archive. NOAA NHC, accessed 10 April 2018, https://www.nhc.noaa.gov/data/#recarch.

  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, https://doi.org/10.1175/MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2016: CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating U.S. West Coast precipitation in a changing climate. Bull. Amer. Meteor. Soc., 97, 12091228, https://doi.org/10.1175/BAMS-D-14-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., J. D. Doyle, F. M. Ralph, and R. Demirdjian, 2019: Adjoint sensitivity of North Pacific atmospheric river forecasts. Mon. Wea. Rev., 147, 18711897, https://doi.org/10.1175/MWR-D-18-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosmond, T., and L. Xu, 2006: Development of NAVDAS-AR: Non-linear formulation and outer loop tests. Tellus, 58A, 4558, https://doi.org/10.1111/j.1600-0870.2006.00148.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and B. Guan, 2017: Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci., 10, 179183, https://doi.org/10.1038/ngeo2894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO OSCAR, 2019: Space-based capabilities. Accessed 24 July 2019, http://www.wmo-sat.info/oscar/spacecapabilities.

  • Xu, L., T. Rosmond, and R. Daley, 2005: Development of NAVDAS-AR: Formulation and initial tests of the linear problem. Tellus, 57A, 546559, https://doi.org/10.1111/j.1600-0870.2005.00123.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 24 24 12
Full Text Views 1 1 0
PDF Downloads 1 1 0

Atmospheric River Reconnaissance Observation Impact in the Navy Global Forecast System

View More View Less
  • 1 SAIC, U.S. Naval Research Laboratory, Monterey, California
  • 2 Marine Meteorology Division, Naval Research Laboratory, Monterey, California
  • 3 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
  • 4 Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

Atmospheric rivers, often associated with impactful weather along the west coast of North America, can be a challenge to forecast even on short time scales. This is attributed, at least in part, to the scarcity of eastern Pacific in situ observations. We examine the impact of assimilating dropsonde observations collected during the Atmospheric River (AR) Reconnaissance 2018 field program on the Navy Global Environmental Model (NAVGEM) analyses and forecasts. We compare NAVGEM’s representation of the ARs to the observations, and examine whether the observation–background difference statistics are similar to the observation error variance specified in the data assimilation system. Forecast sensitivity observation impact is determined for each dropsonde variable, and compared to the impacts of the North American radiosonde network. We find that the reconnaissance soundings have significant beneficial impact, with per observation impact more than double that of the North American radiosonde network. Temperature and wind observations have larger total and per observation impact than moisture observations. In our experiment, the 24-h global forecast error reduction from the reconnaissance soundings can be comparable to the reduction from the North American radiosonde network for the field program dates that include at least two flights.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rebecca E. Stone, rebecca.stone.ctr@nrlmry.navy.mil

Abstract

Atmospheric rivers, often associated with impactful weather along the west coast of North America, can be a challenge to forecast even on short time scales. This is attributed, at least in part, to the scarcity of eastern Pacific in situ observations. We examine the impact of assimilating dropsonde observations collected during the Atmospheric River (AR) Reconnaissance 2018 field program on the Navy Global Environmental Model (NAVGEM) analyses and forecasts. We compare NAVGEM’s representation of the ARs to the observations, and examine whether the observation–background difference statistics are similar to the observation error variance specified in the data assimilation system. Forecast sensitivity observation impact is determined for each dropsonde variable, and compared to the impacts of the North American radiosonde network. We find that the reconnaissance soundings have significant beneficial impact, with per observation impact more than double that of the North American radiosonde network. Temperature and wind observations have larger total and per observation impact than moisture observations. In our experiment, the 24-h global forecast error reduction from the reconnaissance soundings can be comparable to the reduction from the North American radiosonde network for the field program dates that include at least two flights.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rebecca E. Stone, rebecca.stone.ctr@nrlmry.navy.mil
Save