• Amerault, C., X. Zou, and J. Doyle, 2008: Tests of an adjoint mesoscale model with explicit moist physics on the cloud scale. Mon. Wea. Rev., 136, 21202132, https://doi.org/10.1175/2007MWR2259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awaka, J., M. Le, V. Chandrasekar, N. Yoshida, T. Higashiuwatoko, T. Kubota, and T. Iguchi, 2016: Rain type classification algorithm module for GPM dual-frequency precipitation radar. J. Atmos. Oceanic Technol., 33, 18871898, https://doi.org/10.1175/JTECH-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, D., E. Hsie, and R. A. Anthes, 1984: Diagnostic studies of a two-dimensional simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41, 26862700, https://doi.org/10.1175/1520-0469(1984)041<2686:DSOATD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., C. M. Naud, and J. Jeyaratnam, 2018: Extratropical cyclone precipitation life cycles: A satellite-based analysis. Geophys. Res. Lett., 45, 86478654, https://doi.org/10.1029/2018GL078977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, F., F. M. Ralph, A. M. Wilson, and D. P. Lettenmaier, 2017: GPM satellite radar measurements of precipitation and freezing level in atmospheric rivers: Comparison with ground-based radars and reanalyses. J. Geophys. Res. Atmos., 122, 12 74712 764, https://doi.org/10.1002/2017JD027355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, F., C. Hecht, J. Cordeira, and F. M. Ralph, 2018: Synoptic and mesoscale forcing of Southern California extreme precipitation. J. Geophys. Res. Atmos., 123, 13 71413 730, https://doi.org/10.1029/2018JD029045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, D., and H. R. Cho, 1991: The dynamics of moist frontogenesis in a semi-geostrophic model. Atmos. Ocean, 29 (1), 85101.

  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, https://doi.org/10.1175/MWR-D-13-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120, 24092428, https://doi.org/10.1175/1520-0493(1992)120<2409:APVDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., M. T. Stoelinga, and Y. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121, 23092330, https://doi.org/10.1175/1520-0493(1993)121<2309:TIEOCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, https://doi.org/10.1175/JHM-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. Amerault, C. A. Reynolds, and P. A. Reinecke, 2014: Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint. Mon. Wea. Rev., 142, 320342, https://doi.org/10.1175/MWR-D-13-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, T., 2011: A practical, basic guide to quasi-geostrophic theory, response to geostrophic deformation, ageostrophic motion and jet streaks. National Weather Service, Louisville, KY, 26 pp., https://www.weather.gov/media/lmk/soo/QG_Theory_Review.pdf.

  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsie, E., R. A. Anthes, and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41, 25812594, https://doi.org/10.1175/1520-0469(1984)041<2581:NSOFIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., S. Shinta, R. Menghini, N. Yoshida, J. Awaka, M. Le, V. Chandrasekar, and T. Kubota, 2010: GPM/DPR Level-2. Algorithm Theoretical Basis Doc., 68 pp., https://pps.gsfc.nasa.gov/atbd.html.

  • Iguchi, T., and Coauthors, 2018: GPM/DPR Level-2 Algorithm Theoretical Basis Document. Japan Aerospace Exploration Agency, 127 pp., https://www.eorc.jaxa.jp/GPM/doc/algorithm/ATBD_DPR_201811_with_Appendix3b.pdf.

  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., Z. Pu, P.O. Persson, and W. Tao, 2003: Variations associated with cores and gaps of a Pacific narrow cold frontal rainband. Mon. Wea. Rev., 131, 27052729, https://doi.org/10.1175/1520-0493(2003)131<2705:VAWCAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, https://doi.org/10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 5974, https://doi.org/10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and J. R. Gyakum, 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14, 687700, https://doi.org/10.1175/1520-0434(1999)014<0687:HCSPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., D. E. Waliser, F. M. Ralph, and M. D. Dettinger, 2016: Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophys. Res. Lett., 43, 22752282, https://doi.org/10.1002/2016GL067765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., M. J. Rodwell, D. S. Richardson, F. M. Ralph, J. D. Doyle, C. A. Reynolds, V. Tallapragada, and F. Pappenberger, 2018: The gauging and modeling of rivers in the sky. Geophys. Res. Lett., 45, 78287834, https://doi.org/10.1029/2018GL079019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430 pp.

    • Crossref
    • Export Citation
  • Martin, A., F. M. Ralph, R. Demirdjian, L. DeHaan, R. Weihs, J. Helly, D. Reynolds, and S. Iacobellis, 2018: Evaluation of atmospheric river predictions by the WRF Model using aircraft and regional mesonet observations of orographic precipitation and its forcing. J. Hydrometeor., 19, 10971113, https://doi.org/10.1175/JHM-D-17-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., and J. A. Otkin, 2004: The rapid growth and decay of an extratropical cyclone over the central Pacific Ocean. Wea. Forecasting, 19, 358376, https://doi.org/10.1175/1520-0434(2004)019<0358:TRGADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M.T., and B. F. Farrell, 1991: Moist surface frontogenesis associated with interior potential vorticity anomalies in a semigeostrophic model. J. Atmos. Sci., 48, 343368, https://doi.org/10.1175/1520-0469(1991)048<0343:MSFAWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., B. J. Moore, A. B. White, G. A. Wick, J. Aikins, D. L. Jackson, J. R. Spackman, and F. M. Ralph, 2016: An airborne and ground-based study of a long-lived and intense atmospheric river with mesoscale frontal waves impacting California during CalWater-2014. Mon. Wea. Rev., 144, 11151144, https://doi.org/10.1175/MWR-D-15-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakley, N. S., F. Cannon, R. Munroe, J. T. Lancaster, D. Gomberg, and F. M. Ralph, 2018: Brief communication: Meteorological and climatological conditions associated with the 9 January 2018 post-fire debris flows in Montecito and Carpinteria California, USA. Nat. Hazards Earth Syst. Sci., 18, 30373043, https://doi.org/10.5194/nhess-18-3037-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11 (6), 127.

  • Posselt, D. J., and J. E. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578599, https://doi.org/10.1175/1520-0493(2004)132<0578:TEOLHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., E. Sukovich, D. Reynolds, M. Dettinger, S. Weagle, W. Clark, and P. J. Neiman, 2010: Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers. J. Hydrometeor., 11, 12861304, https://doi.org/10.1175/2010JHM1232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2016: CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating U.S. West Coast precipitation in a changing climate. Bull. Amer. Meteor. Soc., 97, 12091228, https://doi.org/10.1175/BAMS-D-14-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017a: Atmospheric rivers emerge as a global science and applications focus. Bull. Amer. Meteor. Soc., 98, 19691973, https://doi.org/10.1175/BAMS-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017b: Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor., 18, 25772596, https://doi.org/10.1175/JHM-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., and G. M. Lackmann, 2004: An investigation of the influence of latent heat release on cold-frontal motion. Mon. Wea. Rev., 132, 28642881, https://doi.org/10.1175/MWR2827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., J. D. Doyle, F. M. Ralph, and R. Demirdjian, 2019: Adjoint sensitivity of North Pacific atmospheric river forecasts. Mon. Wea. Rev., 147, 18711897, https://doi.org/10.1175/MWR-D-18-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A., and Coauthors, 2018: The North Atlantic waveguide and downstream impact experiment. Bull. Amer. Meteor. Soc., 99, 16071637, https://doi.org/10.1175/BAMS-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., D. Kirschbaum, W. Petersen, G. Huffman, C. Kidd, E. Stocker, and R. Kakar, 2018: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quart. J. Roy. Meteor. Soc., 144, 2748, https://doi.org/10.1002/qj.3313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., A. Hamada, C. Yokoyama, Y. Ikuta, S. Shige, M. Yamaji, and T. Kubota, 2017: GPM SLH: Convective latent heating estimated with GPM dual-frequency precipitation radar data. 2017 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract H33J-05.

  • Tao, W., T. Iguchi, and S. Lang, 2019: Expanding the Goddard CSH algorithm for GPM: New extratropical retrievals. J. Appl. Meteor. Climatol., 58, 921946, https://doi.org/10.1175/JAMC-D-18-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, C. M., and D. M. Schultz, 2019: Global climatologies of fronts, airmass boundaries, and airstream boundaries: Why the definition of “front” matters. Mon. Wea. Rev., 147, 691717, https://doi.org/10.1175/MWR-D-18-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and K. A. Emanuel, 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42, 18091824, https://doi.org/10.1175/1520-0469(1985)042<1809:FITPOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., M. D. Dettinger, R. Cifelli, D. Curtis, A. Dufour, K. Miller, J. R. Olsen, and A. M. Wilson, 2019: Hydroclimatic extremes as challenges for the water management community: Lessons from Oroville Dam and Hurricane Harvey [in “Explaining extremes of 2017 from a climate perspective”]. Bull. Amer. Meteor. Soc., 100, S9S14, https://doi.org/10.1175/BAMS-D-18-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., 2011: Numerical Weather and Climate Prediction. Cambridge University Press, 526 pp.

  • White, A. B., B. J. Moore, D. J. Gottas, and P. J. Neiman, 2019: Winter storm conditions leading to excessive runoff above California’s Oroville Dam during January and February 2017. Bull. Amer. Meteor. Soc., 100, 5570, https://doi.org/10.1175/BAMS-D-18-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., P. J. Neiman, F. M. Ralph, and T. M. Hamill, 2013: Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Wea. Forecasting, 28, 13371352, https://doi.org/10.1175/WAF-D-13-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 98 98 58
Full Text Views 7 7 7
PDF Downloads 4 4 4

GPM Satellite Radar Observations of Precipitation Mechanisms in Atmospheric Rivers

View More View Less
  • 1 Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • 2 Meteorology Program, Plymouth State University, Plymouth, New Hampshire
  • 3 Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

Despite numerous studies documenting the importance of atmospheric rivers (AR) to the global water cycle and regional precipitation, the evolution of their water vapor fluxes has been difficult to investigate given the challenges of observing and modeling precipitation processes within ARs over the ocean. This study uses satellite-based radar reflectivity profiles from the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-DPR), combined with kinematic and thermodynamic conditions in the vicinity of the precipitation diagnosed from the Climate Forecast System Reanalysis, to evaluate the characteristics and dynamical origins of precipitation in ARs over the northeast Pacific Ocean. Transects of 192 ARs between 2014 and 2018 are examined. Both stratiform and convective precipitation were abundant in these GPM transects and the precipitation was most often generated by forced ascent in the vicinity of a cold front in frontogenetic environments. Conditioning composite vertical profiles of reflectivity and latent heating from GPM-DPR on frontogenesis near the moist-neutral low-level jet demonstrated the importance of frontally forced precipitation on atmospheric heating tendencies. A case study of a high-impact landfalling AR is analyzed using the Weather Research and Forecasting Model, which showed how the precipitation processes and subsequent latent heat release offshore strongly influenced AR evolution. Although these precipitation mechanisms are present in global-scale models, the difficulty that coarse-resolution models have in accurately representing resultant precipitation likely translates to uncertainty in forecasting heating tendencies, their feedbacks on AR evolution, and ultimately the impacts of ARs upon landfall in the western United States.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Forest Cannon, fcannon@ucsd.edu

Abstract

Despite numerous studies documenting the importance of atmospheric rivers (AR) to the global water cycle and regional precipitation, the evolution of their water vapor fluxes has been difficult to investigate given the challenges of observing and modeling precipitation processes within ARs over the ocean. This study uses satellite-based radar reflectivity profiles from the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-DPR), combined with kinematic and thermodynamic conditions in the vicinity of the precipitation diagnosed from the Climate Forecast System Reanalysis, to evaluate the characteristics and dynamical origins of precipitation in ARs over the northeast Pacific Ocean. Transects of 192 ARs between 2014 and 2018 are examined. Both stratiform and convective precipitation were abundant in these GPM transects and the precipitation was most often generated by forced ascent in the vicinity of a cold front in frontogenetic environments. Conditioning composite vertical profiles of reflectivity and latent heating from GPM-DPR on frontogenesis near the moist-neutral low-level jet demonstrated the importance of frontally forced precipitation on atmospheric heating tendencies. A case study of a high-impact landfalling AR is analyzed using the Weather Research and Forecasting Model, which showed how the precipitation processes and subsequent latent heat release offshore strongly influenced AR evolution. Although these precipitation mechanisms are present in global-scale models, the difficulty that coarse-resolution models have in accurately representing resultant precipitation likely translates to uncertainty in forecasting heating tendencies, their feedbacks on AR evolution, and ultimately the impacts of ARs upon landfall in the western United States.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: Forest Cannon, fcannon@ucsd.edu
Save