• Alford, A. A., M. I. Biggerstaff, and G. D. Carrie, 2018: A method for correcting staggered pulse repetition time (PRT) and dual pulse repetition frequency (PRF) processor errors. Zenodo, accessed 7 July 2018, https://doi.org/10.5281/zenodo.1306295.

    • Crossref
    • Export Citation
  • Baumgardner, D., and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14, 12241229, https://doi.org/10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., W.-C. Lee, C. A. Wolff, and H. Cai, 2013: A solo-based automated quality control algorithm for airborne tail Doppler radar data. J. Appl. Meteor. Climatol., 52, 25092528, https://doi.org/10.1175/JAMC-D-12-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., J. Martinez, D. M. Stechman, R. M. Rauber, G. M. McFarquhar, and A. Marchi, 2018: Structure and dynamics of an intense rear-inflow jet observed on 20 June 2015 during PECAN. Special Symp. on Plains Elevated Convection At Night (PECAN), Austin, TX, Amer. Meteor. Soc., 3.7, https://ams.confex.com/ams/98Annual/webprogram/Paper334395.html.

  • Biggerstaff, M. I., and R. A. Houze, 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065, https://doi.org/10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze, 1993: Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. J. Atmos. Sci., 50, 30913110, https://doi.org/10.1175/1520-0469(1993)050<3091:KAMOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and R. A. Houze, 1994: The transition zone and secondary maximum of radar reflectivity behind a midlatitude squall line: Results retrieved from Doppler radar data. J. Atmos. Sci., 51, 27332755, https://doi.org/10.1175/1520-0469(1994)051<2733:TTZASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and R. A. Houze, 1997: The evolution of the 10–11 June 1985 PRE-STORM squall line: Initiation, development of rear inflow, and dissipation. Mon. Wea. Rev., 125, 478504, https://doi.org/10.1175/1520-0493(1997)125<0478:TEOTJP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, H., W.-C. Lee, M. M. Bell, C. A. Wolff, X. Tang, and F. Roux, 2018: A generalized navigation correction method for airborne Doppler radar data. J. Atmos. OceanicTechnol., 35, 19992017, https://doi.org/10.1175/JTECH-D-18-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., 1986: The Oklahoma-Kansas. Preliminary regional experiment for STORM-central. Bull. Amer. Meteor. Soc., 67, 14781486, https://doi.org/10.1175/1520-0477(1986)067<1478:TOKPRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751094, https://doi.org/10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. Wood, P. R. A. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A. Smith, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20, 249261, https://doi.org/10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, https://doi.org/10.1175/JTECH1922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finlon, J. A., G. M. McFarquhar, S. W. Nesbitt, R. M. Rauber, H. Morrison, W. Wu, and P. Zhang, 2019: A novel approach for characterizing the variability in mass–dimension relationships: Results from MC3E. Atmos. Chem. Phys., 19, 36213643, https://doi.org/10.5194/acp-19-3621-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., 1996: The influence of microphysics in the formation of intense wake lows: A numerical modeling study. Mon. Wea. Rev., 124, 22672281, https://doi.org/10.1175/1520-0493(1996)124<2267:TIOMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., and R. H. Johnson, 1995: The dynamics of circulations within the trailing stratiform regions of squall lines. Part II: Influence of the convective line and ambient environment. J. Atmos. Sci., 52, 21882211, https://doi.org/10.1175/1520-0469(1995)052<2188:TDOCWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grim, J. A., G. M. McFarquhar, R. M. Rauber, A. M. Smith, and B. F. Jewett, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part II: Column model simulations. Mon. Wea. Rev., 137, 11861205, https://doi.org/10.1175/2008MWR2505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., and K. N. Liou, 2000: Interactions of radiation, microphysics, and turbulence in the evolution of cirrus clouds. J. Atmos. Sci., 57, 24632479, https://doi.org/10.1175/1520-0469(2000)057%3C2463:IORMAT%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, M. R. Poellot, and N. Wood, 2015: Observations of ice microphysics through the melting layer. J. Atmos. Sci., 72, 29022928, https://doi.org/10.1175/JAS-D-14-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, https://doi.org/10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., 1987: Some techniques and uses of 2D-C habit classification software for snow particles. J. Atmos. Oceanic Technol., 4, 498511, https://doi.org/10.1175/1520-0426(1987)004%3C0498:STAUOC%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., M. I. Biggerstaff, S. A. Rutledge, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619, https://doi.org/10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and Coauthors, 2012: The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, https://doi.org/10.1029/2012JD017668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., G. M. McFarquhar, J. L. Stith, M. Beals, R. A. Shaw, J. Jensen, J. Fugal, and A. Korolev, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 25672590, https://doi.org/10.1175/JTECH-D-13-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E., D. Starr, and O. B. Toon, 2004: Mission investigates tropical cirrus clouds. Eos, Trans. Amer. Geophys. Union, 85, 4550, https://doi.org/10.1029/2004EO050002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joe, P., and P. T. May, 2003: Correction of dual PRF velocity errors for operational Doppler weather radars. J. Atmos. Oceanic Technol., 20, 429442, https://doi.org/10.1175/1520-0426(2003)20<429:CODPVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., T. J. Matejka, and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. Meteor. Atmos. Phys., 59, 83104, https://doi.org/10.1007/BF01032002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., T. R. Shepherd, and A. S. Goldstein, 2000: A dual-pulse repetition frequency scheme for mitigating velocity ambiguities of the NOAA P-3 airborne Doppler radar. J. Atmos. Oceanic Technol., 17, 585594, https://doi.org/10.1175/1520-0426(2000)017<0585:ADPRFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. A. Isaac, 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22, 528542, https://doi.org/10.1175/JTECH1720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., E. Emery, J. W. Strapp, S. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973, https://doi.org/10.1175/2010BAMS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli, 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697706, https://doi.org/10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowe, P. R., and J. M. Ficke, 1974: The computation of saturation vapor pressure. Naval Environmental Prediction Research Facility, Monterey, CA, 28 pp.

  • Marinescu, P. J., S. C. van den Heever, S. M. Saleeby, and S. M. Kreidenweis, 2016: The microphysical contributions to and evolution of latent heating profiles in two MC3E MCSs. J. Geophys. Res. Atmos., 121, 79137935, https://doi.org/10.1002/2016JD024762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the central equatorial Pacific experiment. J. Atmos. Sci., 53, 24012423, https://doi.org/10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007a: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, https://doi.org/10.1175/MWR3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007b: Ice properties of single-layer stratocumulus during the mixed-phase Arctic cloud experiment: 1. Observations. J. Geophys. Res., 112, D24201, https://doi.org/10.1029/2007JD008633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2011: Indirect and semi-direct aerosol campaign: The impact of arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, https://doi.org/10.1175/2010BAMS2935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2017: Processing of ice cloud in situ data collected by bulk water, scattering, and imaging probes: Fundamentals, uncertainties, and efforts toward consistency. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., 11.1–11.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0007.1.

    • Crossref
    • Export Citation
  • McFarquhar, G. M., J. A. Finlon, D. M. Stechman, W. Wu, R. C. Jackson, and M. Freer, 2018: University of Illinois/Oklahoma Optical Array Probe (OAP) processing software. Zenodo, accessed 5 July 2018, https://doi.org/10.5281/zenodo.1285969.

    • Crossref
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 29242951, https://doi.org/10.1175/1520-0469(1996)053<2924:TIOCGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., D. R. Durran, and M. L. Weisman, 2000: The influence of convective thermal forcing on the three-dimensional circulation around squall lines. J. Atmos. Sci., 57, 2945, https://doi.org/10.1175/1520-0469(2000)057<0029:TIOCTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535, https://doi.org/10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and H. R. Pruppacher, 1982: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius < 500 μm. J. Atmos. Sci., 39, 152158, https://doi.org/10.1175/1520-0469(1982)039<0152:AWTATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. M., G. M. McFarquhar, R. M. Rauber, J. A. Grim, M. S. Timlin, B. F. Jewett, and D. P. Jorgensen, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part I: Observations. Mon. Wea. Rev., 137, 11651185, https://doi.org/10.1175/2008MWR2504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., J. D. MacLeod, and L. E. Lilie, 2008: Calibration of ice water content in a wind tunnel/engine test cell facility. 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, International Commission on Clouds and Precipation, 13.1, http://www.iccp-iamas.org/.

  • Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46, 20082025, https://doi.org/10.1175/1520-0469(1989)046<2008:SOTMLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, https://doi.org/10.1175/JTECH-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, M.-J., and R. A. Houze, 1995: Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123, 31753193, https://doi.org/10.1175/1520-0493(1995)123<3175:SOSLRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., R. A. Houze, E. A. Smith, T. T. Wilheit, and E. Zipser, 2005: Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., 44, 385415, https://doi.org/10.1175/JAM2206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and K. Gao, 1989: Numerical simulation of an intense squall line during 10–11 June 1985 PRE-STORM. Part II: Rear inflow, surface pressure perturbations and stratiform precipitation. Mon. Wea. Rev., 117, 20672094, https://doi.org/10.1175/1520-0493(1989)117<2067:NSOAIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., R. J. Meitín, and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38, 17251750, https://doi.org/10.1175/1520-0469(1981)038<1725:MMFAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 23 23 10
Full Text Views 13 13 7
PDF Downloads 12 12 6

Spatiotemporal Evolution of the Microphysical and Thermodynamic Characteristics of the 20 June 2015 PECAN MCS

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • 2 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • 3 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • 4 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • 5 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

This study examines microphysical and thermodynamic characteristics of the 20 June 2015 mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) experiment, specifically within the transition zone (TZ), enhanced stratiform rain region (ESR), anvil region, melting layer (ML), and the rear inflow jet (RIJ). Analyses are developed from airborne optical array probe data and multiple-Doppler wind and reflectivity syntheses using data from the airborne NOAA Tail Doppler Radar (TDR) and ground-based Weather Surveillance Radar-1988 Doppler (WSR-88D) radars. Seven spiral ascents/descents of the NOAA P-3 aircraft were executed within various regions of the 20 June MCS. Aggregation modified by sublimation was observed in each MCS region, regardless of whether the sampling was within the RIJ. Sustained sublimation and evaporation of precipitation in subsaturated layers led to a trend of downward moistening across the ESR spirals, with greater degrees of subsaturation maintained when in the vicinity of the descending RIJ. In all cases where melting was observed, the ML acted as a prominent thermodynamic boundary, with differing rates of change in temperature and relative humidity above and below the ML. Two spiral profiles coincident with the rear inflow notch provided unique observations within the TZ and were interpreted in the context of similar observations from the 29 June 2003 Bow Echo and Mesoscale Convective Vortex Experiment MCS. There, sublimation cooling and enhanced descent within the RIJ allowed ice particles to survive to temperatures as warm as +6.8°C before completely sublimating/evaporating.

Current affiliations: Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel M. Stechman, stechman@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

This study examines microphysical and thermodynamic characteristics of the 20 June 2015 mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) experiment, specifically within the transition zone (TZ), enhanced stratiform rain region (ESR), anvil region, melting layer (ML), and the rear inflow jet (RIJ). Analyses are developed from airborne optical array probe data and multiple-Doppler wind and reflectivity syntheses using data from the airborne NOAA Tail Doppler Radar (TDR) and ground-based Weather Surveillance Radar-1988 Doppler (WSR-88D) radars. Seven spiral ascents/descents of the NOAA P-3 aircraft were executed within various regions of the 20 June MCS. Aggregation modified by sublimation was observed in each MCS region, regardless of whether the sampling was within the RIJ. Sustained sublimation and evaporation of precipitation in subsaturated layers led to a trend of downward moistening across the ESR spirals, with greater degrees of subsaturation maintained when in the vicinity of the descending RIJ. In all cases where melting was observed, the ML acted as a prominent thermodynamic boundary, with differing rates of change in temperature and relative humidity above and below the ML. Two spiral profiles coincident with the rear inflow notch provided unique observations within the TZ and were interpreted in the context of similar observations from the 29 June 2003 Bow Echo and Mesoscale Convective Vortex Experiment MCS. There, sublimation cooling and enhanced descent within the RIJ allowed ice particles to survive to temperatures as warm as +6.8°C before completely sublimating/evaporating.

Current affiliations: Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel M. Stechman, stechman@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save