• Alfaro, D. A., and M. C. Coniglio, 2018: Discrimination of mature and dissipating severe-wind-producing MCSs with layer-lifting indices. Wea. Forecasting, 33, 321, https://doi.org/10.1175/WAF-D-17-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, https://doi.org/10.1175/2010BAMS2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., 1998: Assessing the vertical distribution of convective available potential energy. Wea. Forecasting, 13, 870877, https://doi.org/10.1175/1520-0434(1998)013<0870:ATVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252, https://doi.org/10.1175/JAS3681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dellaripa, E. M. R., E. D. Maloney, B. A. Toms, S. M. Saleeby, and S. C. van den Heever, 2020: Topographic effects on the Luzon diurnal cycle during the BSISO. J. Atmos. Sci., 77, 330, https://doi.org/10.1175/JAS-D-19-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., and D. R. Durran, 1984: Interaction of low-level flow with the western Ghat Mountains and offshore convection in the summer monsoon. Mon. Wea. Rev., 112, 652672, https://doi.org/10.1175/1520-0493(1984)112<0652:IOLLFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C., M. Park, Y. Choi, and Y. N. Takayabu, 2008: Relationship between intraseasonal oscillation and diurnal variation of summer rainfall over the South China Sea. Geophys. Res. Lett., 35, L03701, https://doi.org/10.1029/2007GL031962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. G. Geotis, F. D. Marks Jr., and A. K. West, 1981: Winter monsoon convection in the vicinity of north Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Wea. Rev., 109, 15951614, https://doi.org/10.1175/1520-0493(1981)109<1595:WMCITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 2016: GPM DPR Ku precipitation profile 2A 1.5 hours 5 km V06. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, accessed October 2019, https://doi.org/10.5067/GPM/DPR/Ku/2A/06.

    • Crossref
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20, 551556, https://doi.org/10.1175/1520-0469(1963)020<0551:TDPCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., S. Cocke, R. Pasch, and S. Low-Nam, 1983: Precipitation estimates from rain gauge and satellite observations, summer MONEX. FSU Rep. 83-7, Department of Meteorology, The Florida State University, 373 pp.

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20, 17131733, https://doi.org/10.1175/JCLI4082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, https://doi.org/10.1007/s00382-012-1544-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C., 1973: The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12, 10661069, https://doi.org/10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, https://doi.org/10.1175/2008JAMC1890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., and E. J. Zipser, 2000: Environmental variability during TOGA COARE. J. Atmos. Sci., 57, 23332350, https://doi.org/10.1175/1520-0469(2000)057<2333:EVDTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., and R. A. Houze Jr., 1992: An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. I: Horizontal structure. Quart. J. Roy. Meteor. Soc., 118, 927963, https://doi.org/10.1002/qj.49711850706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, https://doi.org/10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and C. Liu, 1999: Convection initiation by density currents: Role of convergence, shear, and dynamical organization. Mon. Wea. Rev., 127, 24552464, https://doi.org/10.1175/1520-0493(1999)127<2455:CIBDCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Natoli, M. B., and E. D. Maloney, 2019: Intraseasonal variability of the diurnal cycle of precipitation in the Philippines. J. Atmos. Sci., 76, 36333654, https://doi.org/10.1175/JAS-D-19-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728743, https://doi.org/10.1175/2008JHM939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and M. Yoshizaki, 1988: Numerical study of orographic-convective precipitation over the eastern Arabian Sea and the Ghat Mountains during the summer monsoon. J. Atmos. Sci., 45, 20972122, https://doi.org/10.1175/1520-0469(1988)045<2097:NSOOCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, K., C. Jakob, L. Davies, B. Khouider, and A. J. Majda, 2013: Stochastic behavior of tropical convection in observations and a multicloud model. J. Atmos. Sci., 70, 35563575, https://doi.org/10.1175/JAS-D-13-031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. A. Rutledge, and R. E. Orville, 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124, 602620, https://doi.org/10.1175/1520-0493(1996)124<0602:CTGLOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., R. H. Johnson, and A. K. Rowe, 2013: Diurnal circulations and rainfall in Taiwan during SoWMEX/TiMREX (2008). Mon. Wea. Rev., 141, 38513872, https://doi.org/10.1175/MWR-D-12-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., S. W. Powell, J. Dias, and G. N. Kiladis, 2018: The diurnal variability of precipitating cloud populations during DYNAMO. J. Atmos. Sci., 75, 13071326, https://doi.org/10.1175/JAS-D-17-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saxen, T. R., and S. A. Rutledge, 2000: Surface rainfall–cold cloud fractional coverage relationship in TOGA COARE: A function of vertical wind shear. Mon. Wea. Rev., 128, 407415, https://doi.org/10.1175/1520-0493(2000)128<0407:SRCCFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A., M. Miller, and M. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762, https://doi.org/10.1002/qj.49710845802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., W. Tao, and J. Simpson, 1996: The impact of ocean surface fluxes on a TOGA COARE convective system. Mon. Wea. Rev., 124, 27532763, https://doi.org/10.1175/1520-0493(1996)124<2753:TIOOSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., H. Xu, N. Saji, Y. Wang, and W. T. Liu, 2006: Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Climate, 19, 34203429, https://doi.org/10.1175/JCLI3777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and E. J. Zipser, 2012: Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes. Geophys. Res. Lett., 39, L07802, https://doi.org/10.1029/2012GL051242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2018: Convective variability associated with the boreal summer intraseasonal oscillation in the South China Sea region. J. Climate, 31, 73637383, https://doi.org/10.1175/JCLI-D-18-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., E. J. Zipser, Y. Chen, C. Liu, Y. Liou, W. Lee, and B. Jong-Dao Jou, 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 25552574, https://doi.org/10.1175/MWR-D-11-00208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226, https://doi.org/10.1175/JCLI3883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., S. Mori, M. Katsumata, B. Geng, K. Yasunaga, F. Syamsudin, Nurhayati, and K. Yoneyama, 2017: Diurnal cycle of precipitation observed in the western coastal area of Sumatra Island: Offshore preconditioning by gravity waves. Mon. Wea. Rev., 145, 37453761, https://doi.org/10.1175/MWR-D-16-0468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., S. Mori, F. Syamsudin, U. Haryoko, and B. Geng, 2019: Environmental conditions for nighttime offshore migration of precipitation area as revealed by in situ observation off Sumatra Island. Mon. Wea. Rev., 147, 33913407, https://doi.org/10.1175/MWR-D-18-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, L., J. Sun, X. Zhang, and C. Liu, 2013: Organizational modes of mesoscale convective systems over central East China. Wea. Forecasting, 28, 10811098, https://doi.org/10.1175/WAF-D-12-00088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, https://doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 2003: Convective clouds over the Bay of Bengal. Mon. Wea. Rev., 131, 780798, https://doi.org/10.1175/1520-0493(2003)131<0780:CCOTBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 22 22 14
Full Text Views 14 14 3
PDF Downloads 17 17 6

Impact of the Boreal Summer Intraseasonal Oscillation on the Diurnal Cycle of Precipitation near and over the Island of Luzon

View More View Less
  • 1 Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado
  • 2 School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China
  • 3 Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

During the boreal summer, satellite-based precipitation estimates indicate a distinct maximum in rainfall off the west coast of the island of Luzon in the Philippines. Also occurring during the summer months is the boreal summer intraseasonal oscillation (BSISO), a main driver of intraseasonal variability in the region. This study investigates the diurnal variability of convective intensity, morphology, and precipitation coverage offshore and over the island of Luzon. The results are then composited by BSISO activity. Results of this study indicate that offshore precipitation is markedly increased during active BSISO phases, when strong low-level southwesterly monsoon winds bring increased moisture and enhanced convergence upwind of the island’s high terrain. A key finding of this work is the existence of an afternoon maximum in convection over Luzon even during active BSISO phases, when solar heating and instability are apparently reduced due to enhanced cloud cover. This result is important, as previous studies have shown in other areas of the tropics afternoon convection over landmasses is a key component to offshore precipitation. Although offshore precipitation is maximized in the evening hours during active phases, results indicate that precipitation frequently occurs over the ocean around the clock (both as organized systems and isolated, shallow showers), possibly owing to an increase in sensible and latent heat fluxes, vertical wind shear, and convergence of the monsoon flow with land features.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kyle Chudler, kyle.chudler@colostate.edu

Abstract

During the boreal summer, satellite-based precipitation estimates indicate a distinct maximum in rainfall off the west coast of the island of Luzon in the Philippines. Also occurring during the summer months is the boreal summer intraseasonal oscillation (BSISO), a main driver of intraseasonal variability in the region. This study investigates the diurnal variability of convective intensity, morphology, and precipitation coverage offshore and over the island of Luzon. The results are then composited by BSISO activity. Results of this study indicate that offshore precipitation is markedly increased during active BSISO phases, when strong low-level southwesterly monsoon winds bring increased moisture and enhanced convergence upwind of the island’s high terrain. A key finding of this work is the existence of an afternoon maximum in convection over Luzon even during active BSISO phases, when solar heating and instability are apparently reduced due to enhanced cloud cover. This result is important, as previous studies have shown in other areas of the tropics afternoon convection over landmasses is a key component to offshore precipitation. Although offshore precipitation is maximized in the evening hours during active phases, results indicate that precipitation frequently occurs over the ocean around the clock (both as organized systems and isolated, shallow showers), possibly owing to an increase in sensible and latent heat fluxes, vertical wind shear, and convergence of the monsoon flow with land features.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kyle Chudler, kyle.chudler@colostate.edu
Save