• Adams-Selin, R. D., and C. L. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 49194939, https://doi.org/10.1175/MWR-D-16-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agee, E., and S. Childs, 2014: Adjustments in tornado counts, F-scale intensity, and path width for assessing significant tornado destruction. J. Appl. Meteor. Climatol., 53, 14941505, https://doi.org/10.1175/JAMC-D-13-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agresti, A., and B. A. Coull, 1998: Approximate is better than “exact” for interval estimation of binomial proportions. Amer. Stat., 52, 119126, https://doi.org/10.1080/00031305.1998.10480550.

    • Search Google Scholar
    • Export Citation
  • Ahijevych, D., J. O. Pinto, J. K. Williams, and M. Steiner, 2016: Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique. Wea. Forecasting, 31, 581599, https://doi.org/10.1175/WAF-D-15-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alessandrini, S., L. D. Monache, C. M. Rozoff, and W. E. Lewis, 2018: Probabilistic prediction of tropical cyclone intensity with an analog ensemble. Mon. Wea. Rev., 146, 17231744, https://doi.org/10.1175/MWR-D-17-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvarez, F. M., 2014: Statistical calibration of extended-range probabilistic tornado forecasts with a reforecast dataset. Ph.D. thesis, Saint Louis University, 210 pp.

  • Baggett, C. F., K. M. Nardi, S. J. Childs, S. N. Zito, E. A. Barnes, and E. D. Maloney, 2018: Skillful subseasonal forecasts of weekly tornado and hail activity using the Madden–Julian Oscillation. J. Geophys. Res. Atmos., 123, 12 66112 675, https://doi.org/10.1029/2018JD029059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brimelow, J. C., G. W. Reuter, R. Goodson, and T. W. Krauss, 2006: Spatial forecasts of maximum hail size using prognostic model soundings and HAILCAST. Wea. Forecasting, 21, 206219, https://doi.org/10.1175/WAF915.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bröcker, J., and L. A. Smith, 2007: Increasing the reliability of reliability diagrams. Wea. Forecasting, 22, 651661, https://doi.org/10.1175/WAF993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, A., N. Snook, D. J. Gagne II, S. McCorkle, and A. McGovern, 2020: Calibration of machine learning–based probabilistic hail predictions for operational forecasting. Wea. Forecasting, 35, 149168, https://doi.org/10.1175/WAF-D-19-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., A. MacKenzie, A. McGovern, V. Lakshmanan, and R. Brown, 2015: An automated, multiparameter dryline identification algorithm. Wea. Forecasting, 30, 17811794, https://doi.org/10.1175/WAF-D-15-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. M., and R. H. Johns, 1993: Some wind and instability parameters associated with strong and violent tornadoes: 1. Wind shear and helicity. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 573–582.

    • Crossref
    • Export Citation
  • Doswell, C. A., III, 2004: Weather forecasting by humans: Heuristics and decision making. Wea. Forecasting, 19, 11151126, https://doi.org/10.1175/WAF-821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2007: Small sample size and data quality issues illustrated using tornado occurrence data. Electron. J. Severe Storms Meteor., 2 (5), 116.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. M. Schultz, 2006: On the use of indices and parameters in forecasting severe storms. Electron. J. Severe Storms Meteor., 1 (3), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/11.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., G. W. Carbin, and S. F. Corfidi, 2015: Overview of the Storm Prediction Center. 13th History Symp., Phoenix, AZ, Amer. Meteor. Soc., 1.1, https://ams.confex.com/ams/95Annual/webprogram/Paper266329.html.

  • Elmore, K. L., and H. Grams, 2016: Using mPING data to generate random forests for precipitation type forecasts. 14th Conf. on Artificial and Computational Intelligence and Its Applications to the Environmental Sciences, New Orleans, LA, Amer. Meteor. Soc., 4.2, https://ams.confex.com/ams/96Annual/webprogram/Paper289684.html.

  • Elsner, J. B., and H. M. Widen, 2014: Predicting spring tornado activity in the central Great Plains by 1 March. Mon. Wea. Rev., 142, 259267, https://doi.org/10.1175/MWR-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erickson, M., J. Kastman, B. Albright, S. Perfater, J. Nelson, R. Schumacher, and G. Herman, 2019: Verification results from the 2017 HMT–WPC flash flood and intense rainfall experiment. J. Appl. Meteor. Climatol., 58, 25912604, https://doi.org/10.1175/JAMC-D-19-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., 2001: Greedy function approximation: A gradient boosting machine. Ann. Stat., 29, 11891232, https://doi.org/10.1214/aos/1013203451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, and J. Brotzge, 2009: Classification of convective areas using decision trees. J. Atmos. Oceanic Technol., 26, 13411353, https://doi.org/10.1175/2008JTECHA1205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, J. B. Basara, and R. A. Brown, 2012: Tornadic supercell environments analyzed using surface and reanalysis data: A spatiotemporal relational data-mining approach. J. Appl. Meteor. Climatol., 51, 22032217, https://doi.org/10.1175/JAMC-D-11-060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, and M. Xue, 2014: Machine learning enhancement of storm-scale ensemble probabilistic quantitative precipitation forecasts. Wea. Forecasting, 29, 10241043, https://doi.org/10.1175/WAF-D-13-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., A. J. Clark, B. T. Smith, R. L. Thompson, I. Jirak, and S. R. Dembek, 2018: Blended probabilistic tornado forecasts: Combining climatological frequencies with NSSL–WRF ensemble forecasts. Wea. Forecasting, 33, 443460, https://doi.org/10.1175/WAF-D-17-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J., Jr., 1988: Improving the watch/warning program through use of significant event data. Preprints, 15th Conf. on Severe Local Storms, Baltimore, MD, Amer. Meteor. Soc., 165–168.

  • Hamill, T. M., 2017: Changes in the systematic errors of global reforecasts due to an evolving data assimilation system. Mon. Wea. Rev., 145, 24792485, https://doi.org/10.1175/MWR-D-17-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., 2018: Statistical calibration of extended-range probabilistic tornado forecasts with a reforecast dataset. Ph.D. thesis, Colorado State University, 210 pp.

  • Herman, G. R., and R. S. Schumacher, 2016: Using reforecasts to improve forecasting of fog and visibility for aviation. Wea. Forecasting, 31, 467482, https://doi.org/10.1175/WAF-D-15-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2018a: Dendrology in numerical weather prediction: What random forests and logistic regression tell us about forecasting extreme precipitation. Mon. Wea. Rev., 146, 17851812, https://doi.org/10.1175/MWR-D-17-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2018b: Money doesn’t grow on trees, but forecasts do: Forecasting extreme precipitation with random forests. Mon. Wea. Rev., 146, 15711600, https://doi.org/10.1175/MWR-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., E. R. Nielsen, and R. S. Schumacher, 2018: Probabilistic verification of Storm Prediction Center convective outlooks. Wea. Forecasting, 33, 161184, https://doi.org/10.1175/WAF-D-17-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., and H. E. Brooks, 2012: Evaluation of the Storm Prediction Center’s day 1 convective outlooks. Wea. Forecasting, 27, 15801585, https://doi.org/10.1175/WAF-D-12-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., and H. E. Brooks, 2014: Evaluation of the Storm Prediction Center’s convective outlooks from day 3 through day 1. Wea. Forecasting, 29, 11341142, https://doi.org/10.1175/WAF-D-13-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., and H. E. Brooks, 2017: Determining criteria for missed events to evaluate significant severe convective outlooks. Wea. Forecasting, 32, 13211328, https://doi.org/10.1175/WAF-D-16-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Houston, A. L., and R. B. Wilhelmson, 2011: The dependence of storm longevity on the pattern of deep convection initiation in a low-shear environment. Mon. Wea. Rev., 139, 31253138, https://doi.org/10.1175/MWR-D-10-05036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, A. L., M. R. Igel, and S. C. van den Heever, 2015: Make it a double? Sobering results from simulations using single-moment microphysics schemes. J. Atmos. Sci., 72, 910925, https://doi.org/10.1175/JAS-D-14-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacks, E., 2014: Service change notice 14-42. National Weather Service, Fire and Public Weather Services Branch, NOUS41 KWBC 071749, 3 pp., https://www.weather.gov/media/notification/pdfs/scn14-42day1-3outlooks.pdf.

  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., and Coauthors, 2018: Development of a human–machine mix for forecasting severe convective events. Wea. Forecasting, 33, 715737, https://doi.org/10.1175/WAF-D-17-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, M. P., and H. E. Brooks, 2000: Verification of probabilistic severe storm forecasts at the SPC. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 9.3, https://ams.confex.com/ams/Sept2000/techprogram/paper_15921.htm.

  • Khain, A., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 5969, https://doi.org/10.1175/WAF-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuchera, E. L., and M. D. Parker, 2006: Severe convective wind environments. Wea. Forecasting, 21, 595612, https://doi.org/10.1175/WAF931.1.

  • Labriola, J., N. Snook, Y. Jung, B. Putnam, and M. Xue, 2017: Ensemble hail prediction for the storms of 10 May 2010 in south-central Oklahoma using single- and double-moment microphysical schemes. Mon. Wea. Rev., 145, 49114936, https://doi.org/10.1175/MWR-D-17-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine learning for real-time prediction of damaging straight-line convective wind. Wea. Forecasting, 32, 21752193, https://doi.org/10.1175/WAF-D-17-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loken, E., A. Clark, A. McGovern, M. Flora, and K. Knopfmeier, 2019: Postprocessing next-day ensemble probabilistic precipitation forecasts using random forests. Wea. Forecasting, 34, 20172044, https://doi.org/10.1175/WAF-D-19-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., R. P. Crompton, and E. Dubossarsky, 2017: A machine learning approach to modeling tropical cyclone wind field uncertainty. Mon. Wea. Rev., 145, 32033221, https://doi.org/10.1175/MWR-D-16-0429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., and G. J. Stumpf, 1996: A neural network for tornado prediction based on Doppler radar-derived attributes. J. Appl. Meteor., 35, 617626, https://doi.org/10.1175/1520-0450(1996)035<0617:ANNFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., and G. J. Stumpf, 1998: A neural network for damaging wind prediction. Wea. Forecasting, 13, 151163, https://doi.org/10.1175/1520-0434(1998)013<0151:ANNFDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., and A. Witt, 2001: A Bayesian neural network for severe-hail size prediction. Wea. Forecasting, 16, 600610, https://doi.org/10.1175/1520-0434(2001)016<0600:ABNNFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., D. J. Gagne, N. Troutman, R. A. Brown, J. Basara, and J. K. Williams, 2011: Using spatiotemporal relational random forests to improve our understanding of severe weather processes. Stat. Anal. Data Mining, 4, 407429, https://doi.org/10.1002/sam.10128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., K. L. Elmore, D. J. Gagne, S. E. Haupt, C. D. Karstens, R. Lagerquist, T. Smith, and J. K. Williams, 2017: Using artificial intelligence to improve real-time decision making for high-impact weather. Bull. Amer. Meteor. Soc., 98, 20732090, https://doi.org/10.1175/BAMS-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., R. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and T. Smith, 2019: Making the black box more transparent: Understanding the physical implications of machine learning. Bull. Amer. Meteor. Soc., 100, 21752199, https://doi.org/10.1175/BAMS-D-18-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., and R. L. Winkler, 1977: Reliability of subjective probability forecasts of precipitation and temperature. Appl. Stat., 26, 4147, https://doi.org/10.2307/2346866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., G. R. Herman, R. C. Tournay, J. M. Peters, and R. S. Schumacher, 2015: Double impact: When both tornadoes and flash floods threaten the same place at the same time. Wea. Forecasting, 30, 16731693, https://doi.org/10.1175/WAF-D-15-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2018: Summary of natural hazard statistics for 2018 in the United States. NOAA/National Weather Service, Office of Climate, Weather, and Water Services, 3 pp., https://www.weather.gov/media/hazstat/sum18.pdf.

  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Ramsay, H. A., and C. A. Doswell III, 2005: A sensitivity study of hodograph-based methods for estimating supercell motion. Wea. Forecasting, 20, 954970, https://doi.org/10.1175/WAF889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2017: Exact expression for the lifting condensation level. J. Atmos. Sci., 74, 38913900, https://doi.org/10.1175/JAS-D-17-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothfusz, L., C. Karstens, and D. Hilderbrand, 2014: Next-generation severe weather forecasting and communication. Eos, Trans. Amer. Geophys. Union, 95, 325326, https://doi.org/10.1002/2014EO360001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., and M. D. Parker, 2014: Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Wea. Forecasting, 29, 854877, https://doi.org/10.1175/WAF-D-13-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio, and S. J. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, https://doi.org/10.1175/WAF-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., G. S. Romine, C. S. Schwartz, D. J. Gagne, and M. L. Weisman, 2016a: Explicit forecasts of low-level rotation from convection-allowing models for next-day tornado prediction. Wea. Forecasting, 31, 15911614, https://doi.org/10.1175/WAF-D-16-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, K. R. Fossell, and M. L. Weisman, 2016b: Severe weather prediction using storm surrogates from an ensemble forecasting system. Wea. Forecasting, 31, 255271, https://doi.org/10.1175/WAF-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SPC, 2017a: SVRGIS (updated: 15 May 2017). Storm Prediction Center, accessed 1 June 2017, http://www.spc.noaa.gov/gis/svrgis/.

  • SPC, 2017b: Severe weather climatology (1982–2011). Storm Prediction Center, accessed 1 June 2017, http://www.spc.noaa.gov/new/SVRclimo/climo.php?parm=anySvr.

  • Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn, 2007: Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinf., 8, 25, https://doi.org/10.1186/1471-2105-8-25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis, 2008: Conditional variable importance for random forests. BMC Bioinf., 9, 307, https://doi.org/10.1186/1471-2105-9-307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, and S. J. Camargo, 2012: Association of U.S. tornado occurrence with monthly environmental parameters. Geophys. Res. Lett., 39, L02801, https://doi.org/10.1029/2011GL050368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, https://doi.org/10.1175/WAF910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinden, K. L., and D. R. Bright, 2017: Using the second-generation GEFS reforecasts to predict ceiling, visibility, and aviation flight category. Wea. Forecasting, 32, 17651780, https://doi.org/10.1175/WAF-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, https://doi.org/10.1111/j.1600-0870.2007.00273.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whan, K., and M. Schmeits, 2018: Comparing area-probability forecasts of (extreme) local precipitation using parametric and machine learning statistical post-processing methods. Mon. Wea. Rev., 146, 36513673, https://doi.org/10.1175/MWR-D-17-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Williams, J., 2014: Using random forests to diagnose aviation turbulence. Mach. Learn., 95, 5170, https://doi.org/10.1007/s10994-013-5346-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J., R. Sharman, J. Craig, and G. Blackburn, 2008: Remote detection and diagnosis of thunderstorm turbulence. Proc. SPIE, 7088, 708804, https://doi.org/10.1117/12.795570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wimmers, A., C. Velden, and J. H. Cossuth, 2019: Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery. Mon. Wea. Rev., 147, 22612282, https://doi.org/10.1175/MWR-D-18-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 175 175 88
Full Text Views 29 29 21
PDF Downloads 33 33 24

Forecasting Severe Weather with Random Forests

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Using nine years of historical forecasts spanning April 2003–April 2012 from NOAA’s Second Generation Global Ensemble Forecast System Reforecast (GEFS/R) ensemble, random forest (RF) models are trained to make probabilistic predictions of severe weather across the contiguous United States (CONUS) at Days 1–3, with separate models for tornado, hail, and severe wind prediction at Day 1 in an analogous fashion to the Storm Prediction Center’s (SPC’s) convective outlooks. Separate models are also trained for the western, central, and eastern CONUS. Input predictors include fields associated with severe weather prediction, including CAPE, CIN, wind shear, and numerous other variables. Predictor inputs incorporate the simulated spatiotemporal evolution of these atmospheric fields throughout the forecast period in the vicinity of the forecast point. These trained RF models are applied to unseen inputs from April 2012 to December 2016, and their forecasts are evaluated alongside the equivalent SPC outlooks. The RFs objectively make statistical deductions about the relationships between various simulated atmospheric fields and observations of different severe weather phenomena that accord with the community’s physical understandings about severe weather forecasting. Using these quantified flow-dependent relationships, the RF outlooks are found to produce calibrated probabilistic forecasts that slightly underperform SPC outlooks at Day 1, but significantly outperform their outlooks at Days 2 and 3. In all cases, a blend of the SPC and RF outlooks significantly outperforms the SPC outlooks alone, suggesting that use of RFs can improve operational severe weather forecasting throughout the Day 1–3 period.

Current affiliation: Amazon.com.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aaron J. Hill, aaron.hill@atmos.colostate.edu

Abstract

Using nine years of historical forecasts spanning April 2003–April 2012 from NOAA’s Second Generation Global Ensemble Forecast System Reforecast (GEFS/R) ensemble, random forest (RF) models are trained to make probabilistic predictions of severe weather across the contiguous United States (CONUS) at Days 1–3, with separate models for tornado, hail, and severe wind prediction at Day 1 in an analogous fashion to the Storm Prediction Center’s (SPC’s) convective outlooks. Separate models are also trained for the western, central, and eastern CONUS. Input predictors include fields associated with severe weather prediction, including CAPE, CIN, wind shear, and numerous other variables. Predictor inputs incorporate the simulated spatiotemporal evolution of these atmospheric fields throughout the forecast period in the vicinity of the forecast point. These trained RF models are applied to unseen inputs from April 2012 to December 2016, and their forecasts are evaluated alongside the equivalent SPC outlooks. The RFs objectively make statistical deductions about the relationships between various simulated atmospheric fields and observations of different severe weather phenomena that accord with the community’s physical understandings about severe weather forecasting. Using these quantified flow-dependent relationships, the RF outlooks are found to produce calibrated probabilistic forecasts that slightly underperform SPC outlooks at Day 1, but significantly outperform their outlooks at Days 2 and 3. In all cases, a blend of the SPC and RF outlooks significantly outperforms the SPC outlooks alone, suggesting that use of RFs can improve operational severe weather forecasting throughout the Day 1–3 period.

Current affiliation: Amazon.com.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aaron J. Hill, aaron.hill@atmos.colostate.edu
Save