• Alessandrini, S., L. Delle Monache, C. M. Rozoff, and W. E. Lewis, 2018: Probabilistic prediction of tropical cyclone intensity with an analog ensemble. Mon. Wea. Rev., 146, 17231744, https://doi.org/10.1175/MWR-D-17-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellman, R. E., 1961: Adaptive Control Processes: A Guided Tour. Princeton University Press, 255 pp.

    • Crossref
    • Export Citation
  • Blake, E. S., 2018: National Hurricane Center tropical cyclone report: Hurricane Otis. NOAA Rep. EP152017, 14 pp., https://www.nhc.noaa.gov/data/tcr/EP152017_Otis.pdf.

  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., 2018: National Hurricane Center Forecast verification report: 2017 hurricane season. NOAA, 73 pp., https://www.nhc.noaa.gov/verification/pdfs/Verification_2017.pdf.

  • Cangialosi, J. P., 2019: National Hurricane Center Forecast verification report: 2018 hurricane season. NOAA, 73 pp., https://www.nhc.noaa.gov/verification/pdfs/Verification_2018.pdf.

  • Cloud, K. A., B. J. Reich, C. M. Rozoff, S. Alessandrini, W. E. Lewis, and L. Delle Monache, 2019: A feed forward neural network based on model output statistics for short-term hurricane intensity prediction. Wea. Forecasting, 34, 985997, https://doi.org/10.1175/WAF-D-18-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 6882, https://doi.org/10.1175/2008MWR2513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. Knaff, and J. Kaplan, 2006: On the decay of tropical cyclone winds crossing narrow landmasses. J. Appl. Meteor. Climatol., 45, 491499, https://doi.org/10.1175/JAM2351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and F. Zhang, 2016: On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci., 73, 37393747, https://doi.org/10.1175/JAS-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and F. Zhang, 2017: On the role of inner-core moisture in tropical cyclone predictability and forecast skill. J. Atmos. Sci., 74, 23152324, https://doi.org/10.1175/JAS-D-17-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, K. L. Corbosiero, and C. M. Rozoff, 2018: Normalized convective characteristics of tropical cyclone rapid intensification events in the North Atlantic and eastern North Pacific. Mon. Wea. Rev., 146, 11331155, https://doi.org/10.1175/MWR-D-17-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogel, L. J., 1999: Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming. John Wiley, 162 pp.

  • Gopalakrishnan, S. G., F. Marks Jr., X. Zhang, J.-W. Bao, K.-S. Yeh, and R. Atlas, 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 17621784, https://doi.org/10.1175/2010MWR3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grumm, R. J., and R. Hart, 2001: Standardized anomalies applied to significant cold season weather events: Preliminary findings. Wea. Forecasting, 16, 736754, https://doi.org/10.1175/1520-0434(2001)016<0736:SAATSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky, 1999: Bayesian model averaging: A tutorial. Stat. Sci., 14, 382417.

  • Jiang, H., and E. M. Ramirez, 2013: Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data. J. Climate, 26, 64596470, https://doi.org/10.1175/JCLI-D-12-00432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteor., 34, 24992512, https://doi.org/10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2001: On the decay of tropical cyclone winds after landfall in the New England area. J. Appl. Meteor., 40, 280286, https://doi.org/10.1175/1520-0450(2001)040<0280:OTDOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability using statistical models. Wea. Forecasting, 30, 13741396, https://doi.org/10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., and Z. Moon, 2016: Hurricane intensity predictability. Bull. Amer. Meteor. Soc., 97, 18471857, https://doi.org/10.1175/BAMS-D-15-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, C. R. Sampson, and J. M. Gross, 2003: Statistical, 5-day tropical cyclone intensity forecasts derived from climatology and persistence. Wea. Forecasting, 18, 8092, https://doi.org/10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., R. Lagerquist, D. J. Gagne II, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and T. Smith, 2019: Making the black box more transparent: Understanding the physical implications of machine learning. Bull. Amer. Meteor. Soc., 100, 21752199, https://doi.org/10.1175/BAMS-D-18-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, K., J. Carroll, K. Seppi, and T. Martinez, 2011: Turning Bayesian model averaging into Bayesian model combination. Proc. 2011 Int. Joint Conf. on Neural Networks, San Jose, CA, Institute of Electrical and Electronics Engineers, 2657–2663, https://doi.org/10.1109/IJCNN.2011.6033566.

    • Crossref
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12, 595600, https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP, 2016: The Global Forecast System (GFS)–Global Spectral Model (GSM). NOAA, accessed 4 March 2019, https://www.emc.ncep.noaa.gov/GFS/doc.php.

  • Pasch, R. J., 2015: National Hurricane Center annual summary: 2014 Atlantic hurricane season. NOAA, accessed 3 April 2020, https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php.

  • Pasch, R. J., A. B. Penny, and R. Berg, 2019: National Hurricane Center tropical cyclone report: Hurricane Maria. NOAA Rep. AL152017, 48 pp., https://www.nhc.noaa.gov/data/tcr/AL152017_Maria.pdf.

  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, https://doi.org/10.1175/MWR2906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., J.-G. Jiing, C. W. Landsea, S. T. Murillo, and J. L. Franklin, 2012: The Joint Hurricane Test Bed: Its first decade of tropical cyclone research-to-operations activities reviewed. Bull. Amer. Meteor. Soc., 93, 371380, https://doi.org/10.1175/BAMS-D-11-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2010: Seeking consensus: A new approach. Mon. Wea. Rev., 138, 44024415, https://doi.org/10.1175/2010MWR3508.1.

  • Roebber, P. J., 2013: Using evolutionary programming to generate skillful extreme value probabilistic forecasts. Mon. Wea. Rev., 141, 31703185, https://doi.org/10.1175/MWR-D-12-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2015a: Evolving ensembles. Mon. Wea. Rev., 143, 471490, https://doi.org/10.1175/MWR-D-14-00058.1.

  • Roebber, P. J., 2015b: Using evolutionary programming to maximize minimum temperature forecast skill. Mon. Wea. Rev., 143, 15061516, https://doi.org/10.1175/MWR-D-14-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2016: Development of a large member ensemble forecast system for heavy rainfall using evolutionary programming (EP). DTC, 10 pp., https://dtcenter.org/sites/default/files/visitor-projects/Roebber-DTCFinalReport.pdf.

  • Roebber, P. J., 2018: Using evolutionary programming to add deterministic and probabilistic skill to spatial model forecasts. Mon. Wea. Rev., 146, 25252540, https://doi.org/10.1175/MWR-D-17-0272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., and J. Crockett, 2019: Using a coevolutionary postprocessor to improve skill for both forecasts of surface temperature and nowcasts of convection occurrence. Mon. Wea. Rev., 147, 42414259, https://doi.org/10.1175/MWR-D-19-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., and J. P. Kossin, 2011: New probabilistic forecast models for the prediction of tropical cyclone rapid intensification. Wea. Forecasting, 26, 677689, https://doi.org/10.1175/WAF-D-10-05059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., C. S. Velden, J. Kaplan, J. P. Kossin, and A. J. Wimmers, 2015: Improvements in the probabilistic prediction of tropical cyclone rapid intensification with passive microwave observations. Wea. Forecasting, 30, 10161038, https://doi.org/10.1175/WAF-D-14-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, U., H. Owada, M. Yamaguchi, T. Iriguchi, M. Sawada, K. Aoniashi, M. DeMaria, and K. D. Musgrave, 2018: Further improvements to the Statistical Hurricane Intensity Prediction Scheme using tropical cyclone rainfall and structural features. Wea. Forecasting, 33, 15871603, https://doi.org/10.1175/WAF-D-18-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S., 2014: National Hurricane Center annual summary: 2012 Atlantic hurricane season. NOAA, 11 pp., http://www.nhc.noaa.gov/data/tcr/summary_atlc_2012.pdf.

  • Stewart, S., 2016: National Hurricane Center annual summary: 2015 Atlantic hurricane season. NOAA, 16 pp., http://www.nhc.noaa.gov/data/tcr/summary_atlc_2015.pdf.

  • Tallapragada, V., C. Kieu, Y. Kwon, S. Trahan, Q. Liu, Z. Zhang, and I.-H. Kwon, 2014: Evaluation of storm structure from the operational HWRF during 2012 implementation. Mon. Wea. Rev., 142, 43084325, https://doi.org/10.1175/MWR-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. Ritchie, 2015: A definition for rapid weakening of North Atlantic and eastern North Pacific tropical cyclones. Geophys. Res. Lett., 42, 10 09110 097, https://doi.org/10.1002/2015GL066697.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 33 33 21
Full Text Views 7 7 6
PDF Downloads 6 6 5

Development and Evaluation of an Evolutionary Programming-Based Tropical Cyclone Intensity Model

View More View Less
  • 1 Atmospheric Science Program, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
© Get Permissions
Restricted access

Abstract

A statistical–dynamical tropical cyclone (TC) intensity model is developed from a large ensemble of algorithms through evolutionary programming (EP). EP mimics the evolutionary principles of genetic information, reproduction, and mutation to develop a population of algorithms with skillful predictor combinations. From this evolutionary process the 100 most skillful algorithms as determined by root-mean square error on validation data are kept and bias corrected. Bayesian model combination is used to assign weights to a subset of 10 skillful yet diverse algorithms from this list. The resulting algorithm combination produces a forecast superior in skill to that from any individual algorithm. Using these methods, two models are developed to give deterministic and probabilistic forecasts for TC intensity every 12 h out to 120 h: one each for the North Atlantic and eastern and central North Pacific basins. Deterministic performance, as defined by MAE, exceeds that of a “no skill” forecast in the North Atlantic to 96 h and is competitive with the operational Statistical Hurricane Intensity Prediction Scheme and Logistic Growth Equation Model at these times. In the eastern and central North Pacific, deterministic skill is comparable to the blended 5-day climatology and persistence (CLP5) track and decay-SHIFOR (DSHF) intensity forecast (OCD5) only to 24 h, after which time it is generally less skillful than OCD5 and all operational guidance. Probabilistic rapid intensification forecasts at the 25–30 kt (24 h)−1 thresholds, particularly in the Atlantic, are skillful relative to climatology and competitive with operational guidance when subjectively calibrated; however, probabilistic rapid weakening forecasts are not skillful relative to climatology at any threshold in either basin. Case studies are analyzed to give more insight into model behavior and performance.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Clark Evans, evans36@uwm.edu.

Abstract

A statistical–dynamical tropical cyclone (TC) intensity model is developed from a large ensemble of algorithms through evolutionary programming (EP). EP mimics the evolutionary principles of genetic information, reproduction, and mutation to develop a population of algorithms with skillful predictor combinations. From this evolutionary process the 100 most skillful algorithms as determined by root-mean square error on validation data are kept and bias corrected. Bayesian model combination is used to assign weights to a subset of 10 skillful yet diverse algorithms from this list. The resulting algorithm combination produces a forecast superior in skill to that from any individual algorithm. Using these methods, two models are developed to give deterministic and probabilistic forecasts for TC intensity every 12 h out to 120 h: one each for the North Atlantic and eastern and central North Pacific basins. Deterministic performance, as defined by MAE, exceeds that of a “no skill” forecast in the North Atlantic to 96 h and is competitive with the operational Statistical Hurricane Intensity Prediction Scheme and Logistic Growth Equation Model at these times. In the eastern and central North Pacific, deterministic skill is comparable to the blended 5-day climatology and persistence (CLP5) track and decay-SHIFOR (DSHF) intensity forecast (OCD5) only to 24 h, after which time it is generally less skillful than OCD5 and all operational guidance. Probabilistic rapid intensification forecasts at the 25–30 kt (24 h)−1 thresholds, particularly in the Atlantic, are skillful relative to climatology and competitive with operational guidance when subjectively calibrated; however, probabilistic rapid weakening forecasts are not skillful relative to climatology at any threshold in either basin. Case studies are analyzed to give more insight into model behavior and performance.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Clark Evans, evans36@uwm.edu.
Save