• Anagnostou, E. N., and C. Kummerow, 1997: Stratiform and convective classification of rainfall using SSM/I 85-GHz brightness temperature observations. J. Atmos. Oceanic Technol., 14, 570575, https://doi.org/10.1175/1520-0426(1997)014<0570:SACCOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, H. Kumagai, and K. I. Okamoto, 1997: Rain type classification algorithm for TRMM precipitation radar. Proc. 1997 IEEE Int. Geoscience and Remote Sensing Symp.—A Scientific Vision for Sustainable Development (IGARSS’97), Vol. 4, Singapore, IEEE, 1633–1635, https://doi.org/10.1109/IGARSS.1997.608993.

    • Crossref
    • Export Citation
  • Awaka, J., T. Iguchi, and K. I. Okamoto, 2007: Rain type classification algorithm. Measuring Precipitation from Space: EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer, 213224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awaka, J., M. Le, V. Chandrasekar, N. Yoshida, T. Higashiuwatoko, T. Kubota, and T. Iguchi, 2016: Rain type classification algorithm module for GPM dual-frequency precipitation radar. J. Atmos. Oceanic Technol., 33, 18871898, https://doi.org/10.1175/JTECH-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benz A., M. Leand Coauthors, 2019: GOES-R Series Data Book. NASA GOES-R Series Program Office, 240 pp., https://www.goes-r.gov/downloads/resources/documents/GOES-RSeriesDataBook.pdf.

  • Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105, https://doi.org/10.1029/2003JD004371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., R. J. Blakeslee, S. J. Goodman, and D. M. Mach, Eds., 2000: Algorithm Theoretical Basis Document (ATBD) for the Lightning Imaging Sensor (LIS). NASA/Marshall Space Flight Center, 53 pp.

  • Coleman, L. M., M. Stolzenburg, T. C. Marshall, and M. Stanley, 2008: Horizontal lightning propagation, preliminary breakdown, and electric potential in New Mexico thunderstorms. J. Geophys. Res., 113, D09208, https://doi.org/10.1029/2007JD009459.

    • Search Google Scholar
    • Export Citation
  • Ely, B. L., R. E. Orville, L. D. Carey, and C. L. Hodapp, 2008: Evolution of the total lightning structure in a leading-line, trailing-stratiform mesoscale convective system over Houston, Texas. J. Geophys. Res., 113, D08114, https://doi.org/10.1029/2007JD008445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. Mach, W. J. Koshak, and R. J. Blakeslee, 2010: GLM Lightning Cluster-Filter Algorithm (LCFA). Algorithm Theoretical Basis Doc., 73 pp., https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_GLM_v3.0_Jul2012.pdf.

  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., C. D. Kummerow, and W. S. Olson, 1999: Separation of convective and stratiform precipitation using microwave brightness temperature. J. Appl. Meteor., 38, 11951213, https://doi.org/10.1175/1520-0450(1999)038<1195:SOCASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, E. P. Krider and R. G. Roble, Eds., National Academies Press, 90113.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., D. R. MacGorman, M. I. Biggerstaff, and P. R. Krehbiel, 2009: Lightning initiation in the anvils of two supercell storms. Geophys. Res. Lett., 36, L07802, https://doi.org/10.1029/2008GL036650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2008: Kinematic, microphysical, and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000. J. Geophys. Res., 113, D08213, https://doi.org/10.1029/2006JD007709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., S. A. Rutledge, and K. C. Wiens, 2004: Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system. Geophys. Res. Lett., 31, L10105, https://doi.org/10.1029/2004GL019823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., Y. Li, M. Yu, L. S. Chiu, X. Hao, D. Q. Duffy, and C. Yang, 2019: Daytime rainy cloud detection and convective precipitation delineation based on a deep neural Network method using GOES-16 ABI images. Remote Sens., 11, 2555, https://doi.org/10.3390/rs11212555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, D. M., H. J. Christian, R. J. Blakeslee, D. J. Boccippio, S. J. Goodman, and W. L. Boeck, 2007: Performance assessment of the optical transient detector and lightning imaging sensor. J. Geophys. Res., 112, D09210, https://doi.org/10.1029/2006JD007787.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and W. D. Rust, 1993: Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems. Bull. Amer. Meteor. Soc., 74, 21592170, https://doi.org/10.1175/1520-0477(1993)074<2159:TTOVES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., W. D. Rust, W. P. Winn, and K. E. Gilbert, 1989: Electrical structure in two thunderstorm anvil clouds. J. Geophys. Res., 94, 21712181, https://doi.org/10.1029/JD094iD02p02171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., M. Stolzenburg, P. R. Krehbiel, N. R. Lund, and C. R. Maggio, 2009: Electrical evolution during the decay stage of New Mexico thunderstorms. J. Geophys. Res., 114, D02209, https://doi.org/10.1029/2008JD010637.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., Y. Hong, C. D. Kummerow, and J. Turk, 2001: A texture-polarization method for estimating convective–stratiform precipitation area coverage from passive microwave radiometer data. J. Appl. Meteor., 40, 15771591, https://doi.org/10.1175/1520-0450(2001)040<1577:ATPMFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., 2019a: Research applications for the Geostationary Lightning Mapper operational lightning flash data product. J. Geophys. Res. Atmos., 124, 10 20510 231, https://doi.org/10.1029/2019JD031054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., 2019b: Using lightning flashes to image thunderclouds. J. Geophys. Res. Atmos., 124, 10 17510 185, https://doi.org/10.1029/2019JD031055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., 2020: Removing solar artifacts from Geostationary Lightning Mapper data to document lightning extremes. J. Appl. Remote Sens., 14, 032402, https://doi.org/10.1117/1.JRS.14.032402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., and C. Liu, 2013: Characteristics of lightning flashes with exceptional illuminated areas, durations, and optical powers and surrounding storm properties in the tropics and inner subtropics. J. Geophys. Res. Atmos., 118, 11 72711 740, https://doi.org/10.1002/JGRD.50715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., and S. Rudlosky, 2019: The time evolution of optical lightning flashes. J. Geophys. Res. Atmos., 124, 333349, https://doi.org/10.1029/2018JD028741.

    • Search Google Scholar
    • Export Citation
  • Peterson, M., W. Deierling, C. Liu, D. Mach, and C. Kalb, 2017a: The properties of optical lightning flashes and the clouds they illuminate. J. Geophys. Res. Atmos., 122, 423442, https://doi.org/10.1002/2016JD025312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., S. Rudlosky, and W. Deierling, 2017b: The evolution and structure of extreme optical lightning flashes. J. Geophys. Res. Atmos., 122, 13 37013 386, https://doi.org/10.1002/2017JD026855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., S. Rudlosky, and W. Deierling, 2018: Mapping the lateral development of lightning flashes from orbit. J. Geophys. Res. Atmos., 123, 96749687, https://doi.org/10.1029/2018JD028583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., S. Rudlosky, and D. Zhang, 2020: Changes to the appearance of optical lightning flashes observed from space according to thunderstorm organization and structure. J. Geophys. Res. Atmos., 125, e2019JD031087, https://doi.org/10.1029/2019JD031087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576, https://doi.org/10.1029/1999GL010856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., S. J. Goodman, K. S. Virts, and E. C. Bruning, 2019: Initial Geostationary Lightning Mapper observations. Geophys. Res. Lett., 46, 10971104, https://doi.org/10.1029/2018GL081052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, https://doi.org/10.1175/BAMS-86-8-1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., T. C. Marshall, W. D. Rust, and B. F. Smull, 1994: Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system. Mon. Wea. Rev., 122, 17771797, https://doi.org/10.1175/1520-0493(1994)122<1777:HDOEAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, S. A., D. R. MacGorman, and K. M. Calhoun, 2012: Lightning in the anvils of supercell thunderstorms. Mon. Wea. Rev., 140, 20642079, https://doi.org/10.1175/MWR-D-11-00312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 125 125 30
Full Text Views 46 46 7
PDF Downloads 46 46 8

Thunderstorm Cloud-Type Classification from Space-Based Lightning Imagers

View More View Less
  • 1 ISR-2, Los Alamos National Laboratory, Los Alamos, New Mexico
  • 2 NOAA/NESDIS/STAR, SCSB, College Park, Maryland
  • 3 Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, College Park, Maryland
© Get Permissions
Restricted access

Abstract

The organization and structure of thunderstorms determines the extent and severity of their hazards to the general public and their consequences for the Earth system. Distinguishing vigorous convective regions that produce heavy rain and hail from adjacent regions of stratiform clouds or overhanging anvil clouds that produce light to no rainfall is valuable in operations and physical research. Cloud-type algorithms that partition convection from stratiform regions have been developed for space-based radar, passive microwave, and now Geostationary Operational Environmental Satellites (GOES) Advanced Baseline Imager (ABI) multispectral products. However, there are limitations for each of these products including temporal availability, spatial coverage, and the degree to which they based on cloud microphysics. We have developed a cloud-type algorithm for GOES Geostationary Lightning Mapper (GLM) observations that identifies convective/nonconvective regions in thunderstorms based on signatures of interactions with nonconvective charge structures in the lightning flash data. The GLM sensor permits a rapid (20 s) update cycle over the combined GOES-16GOES-17 domain across all hours of the day. Storm regions that do not produce lightning will not be classified by our algorithm, however. The GLM cloud-type product is intended to provide situational awareness of electrified nonconvective clouds and to complement other cloud-type retrievals by providing a contemporary assessment tied to lightning physics. We propose that a future combined ABI–GLM cloud-type algorithm would be a valuable product that could draw from the strengths of each instrument and approach.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael Peterson, mpeterson@lanl.gov

Abstract

The organization and structure of thunderstorms determines the extent and severity of their hazards to the general public and their consequences for the Earth system. Distinguishing vigorous convective regions that produce heavy rain and hail from adjacent regions of stratiform clouds or overhanging anvil clouds that produce light to no rainfall is valuable in operations and physical research. Cloud-type algorithms that partition convection from stratiform regions have been developed for space-based radar, passive microwave, and now Geostationary Operational Environmental Satellites (GOES) Advanced Baseline Imager (ABI) multispectral products. However, there are limitations for each of these products including temporal availability, spatial coverage, and the degree to which they based on cloud microphysics. We have developed a cloud-type algorithm for GOES Geostationary Lightning Mapper (GLM) observations that identifies convective/nonconvective regions in thunderstorms based on signatures of interactions with nonconvective charge structures in the lightning flash data. The GLM sensor permits a rapid (20 s) update cycle over the combined GOES-16GOES-17 domain across all hours of the day. Storm regions that do not produce lightning will not be classified by our algorithm, however. The GLM cloud-type product is intended to provide situational awareness of electrified nonconvective clouds and to complement other cloud-type retrievals by providing a contemporary assessment tied to lightning physics. We propose that a future combined ABI–GLM cloud-type algorithm would be a valuable product that could draw from the strengths of each instrument and approach.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael Peterson, mpeterson@lanl.gov
Save