• Andersson, E., M. Fisher, R. Munro, and A. McNally, 2000: Diagnosis of background errors for radiances and other observable quantities in a variational data assimilation scheme, and the explanation of a case of poor convergence. Quart. J. Roy. Meteor. Soc., 126, 14551472, https://doi.org/10.1256/smsqj.56511.

    • Search Google Scholar
    • Export Citation
  • Auligné, T., A. P. McNally, and D. P. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133, 631642, https://doi.org/10.1002/qj.56.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannister, R. N., 2008: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics. Quart. J. Roy. Meteor. Soc., 134, 19711996, https://doi.org/10.1002/qj.340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., R. Buizza, C. Cardinali, and J.-N. Thépaut, 2011: Impact of singular-vector-based satellite data thinning on NWP. Quart. J. Roy. Meteor. Soc., 137, 286302, https://doi.org/10.1002/qj.733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., L. Isaksen, and E. Hólm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 15401559, https://doi.org/10.1002/qj.1899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., and P. Bauer, 2010: Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: Methods and application to ATOVS data. Quart. J. Roy. Meteor. Soc., 136, 10361050, https://doi.org/10.1002/qj.616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., A. Collard, and P. Bauer, 2010: Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. II: Application to AIRS and IASI data. Quart. J. Roy. Meteor. Soc., 136, 10511063, https://doi.org/10.1002/qj.615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., A. J. Geer, and P. Bauer, 2011: Estimates of observation-error characteristics in clear and cloudy regions for microwave imager radiances from numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 20142023, https://doi.org/10.1002/qj.833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res. Atmos., 118, 12 97012 980, https://doi.org/10.1002/2013JD020325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., M. Bonavita, R. Dragani, R. Eresmaa, M. Matricardi, and A. McNally, 2016: Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Quart. J. Roy. Meteor. Soc., 142, 17671780, https://doi.org/10.1002/qj.2774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, W. F., E. A. Satterfield, B. Ruston, and N. L. Baker, 2017: Accounting for correlated observation error in a dual-formulation 4D variational data assimilation system. Mon. Wea. Rev., 145, 10191032, https://doi.org/10.1175/MWR-D-16-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daescu, D. N., 2008: On the sensitivity equations of four-dimensional variational (4D-Var) data assimilation. Mon. Wea. Rev., 136, 30503065, https://doi.org/10.1175/2007MWR2382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalcher, A., and E. Kalnay, 1987: Error growth and predictability in operational ECMWF forecasts. Tellus, 39A, 474491, https://doi.org/10.1111/j.1600-0870.1987.tb00322.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Proc. ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, United Kingdom, ECMWF, 97–112.

  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., and S. Ivanov, 2001: Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Quart. J. Roy. Meteor. Soc., 127, 14331452, https://doi.org/10.1002/qj.49712757417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eresmaa, R., J. Letertre-Danczak, C. Lupu, N. Bormann, and A. P. McNally, 2017: The assimilation of Cross-track Infrared Sounder radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 143, 31773188, https://doi.org/10.1002/qj.3171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., N. C. Privé, and W. Gu, 2015: Use of an OSSE to evaluate background-error covariances estimated by the NMC method. Quart. J. Roy. Meteor. Soc., 141, 611618, https://doi.org/10.1002/qj.2384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golub, G. H., and C. F. Van Loan, 1996: Matrix Computations. 3rd ed. Johns Hopkins University Press, 728 pp.

  • Hersbach, H., and D. P. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hollingsworth, A., and P. Lönnberg, 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111136, https://doi.org/10.1111/j.1600-0870.1986.tb00460.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishibashi, T., 2010: Optimization of error covariance matrices and estimation of observation data impact in the JMA global 4D-Var system. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling, No. 40, 1.11–1.12.

  • Ishibashi, T., 2011: Tangent linear approximation based observation data impact estimation in 4D-Var. Quart. J. Roy. Meteor. Soc., 137, 18981912, https://doi.org/10.1002/qj.871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishibashi, T., 2018: Adjoint-based observation impact estimation with direct verification using forward calculation. Mon. Wea. Rev., 146, 28372858, https://doi.org/10.1175/MWR-D-18-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2007: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP), Japan Meteorological Agency, Tokyo, Japan, accessed 21 May 2020, http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-nwp/index.htm.

  • JMA, 2013: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP), Japan Meteorological Agency, Tokyo, Japan, accessed 21 May 2020, http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/index.htm.

  • Kadowaki, T., and K. Yoshimoto, 2012: A new inner model with a higher horizontal resolution (TL319) in JMA’s Global 4D-Var data assimilation system. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling, No. 42, 1.9–1.10.

  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

    • Crossref
    • Export Citation
  • Liu, Z.-Q., and F. Rabier, 2003: The potential of high-density observations for numerical weather prediction: A study with simulated observations. Quart. J. Roy. Meteor. Soc., 129, 30133035, https://doi.org/10.1256/qj.02.170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 11771194, https://doi.org/10.1002/qj.49711247414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34, 505513, https://doi.org/10.3402/tellusa.v34i6.10836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ménard, R., 2016: Error covariance estimation methods based on analysis residuals: Theoretical foundation and convergence properties derived from simplified observation networks. Quart. J. Roy. Meteor. Soc., 142, 257273, https://doi.org/10.1002/qj.2650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., A. McNally, E. Andersson, P. Courtier, P. Undén, J. Eyre, A. Hollingsworth, and F. Bouttier, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). II: Structure functions. Quart. J. Roy. Meteor. Soc., 124, 18091829, https://doi.org/10.1002/qj.49712455003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., P. J. Webster, and E. Kalnay, 1994: Random error growth in NMC’s global forecasts. Mon. Wea. Rev., 122, 12811305, https://doi.org/10.1175/1520-0493(1994)122<1281:REGING>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, L. M., S. Dance, N. K. Nichols, J. R. Eyre, and J. Cameron, 2014: Estimating interchannel observation-error correlations for IASI radiance data in the Met Office system. Quart. J. Roy. Meteor. Soc., 140, 12361244, https://doi.org/10.1002/qj.2211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and T. F. Hogan, 2002: Boundary layer clouds in a global atmospheric model: Simple cloud cover parameterizations. J. Climate, 15, 12611276, https://doi.org/10.1175/1520-0442(2002)015<1261:BLCIAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waller, J. A., S. L. Dance, and N. K. Nichols, 2016: Theoretical insight into diagnosing observation error correlations using observation-minus-background and observation-minus-analysis statistics. Quart. J. Roy. Meteor. Soc., 142, 418431, https://doi.org/10.1002/qj.2661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weston, P., W. Bell, and J. Eyre, 2014: Accounting for correlated error in the assimilation of high-resolution sounder data. Quart. J. Roy. Meteor. Soc., 140, 24202429, https://doi.org/10.1002/qj.2306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Žagar, N., M. Horvat, Ž. Zaplotnik, and L. Magnusson, 2017: Scale-dependent estimates of the growth of forecast uncertainties in a global prediction system. Tellus, 69A, 1287492, https://doi.org/10.1080/16000870.2017.1287492.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 21 21 13
Full Text Views 9 9 6
PDF Downloads 13 13 9

Improvement of Accuracy of Global Numerical Weather Prediction Using Refined Error Covariance Matrices

View More View Less
  • 1 Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
© Get Permissions
Restricted access

Abstract

In data assimilation for NWP, accurate estimation of error covariance matrices (ECMs) and their use are essential to improve NWP accuracy. The objective of this study is to estimate ECMs of all observations and background variables using sampling statistics, and improve global NWP accuracy by using them. This study presents the first results of such all ECM refinement. ECM diagnostics combining multiple methods, and analysis and forecast cycle experiments were performed on the JMA global NWP system, where diagonal components of all ECMs and off-diagonal components of radiance observations are refined. The ECM diagnostic results are as follows: 1) the diagnosed error standard deviations (SDs) are generally much smaller than those of the JMA operational system (CNTL); 2) interchannel correlations in humidity-sensitive radiance errors are much larger than 0.2; and 3) horizontal correlation distances of AMSU-A are ~50 km, excluding channel 4. The experimental results include the following: 1) the diagnosed ECMs generally improve forecast accuracy over CNTL even without additional tunings; 2) the supplemental tuning parameter, which is the deflation factor (0.6 in SD) applied for the estimated ECMs of nonsatellite conventional data and GPS radio occultation data, statistically significantly improves forecast accuracy; 3) this value 0.6 is set as the same value as the ratio of the estimated background error SD to that in CNTL; 4) high-density assimilation (10 times) of AMSU-A is better than CNTL, not better than that with 5 times; and 5) ECMs estimated using boreal summer data can improve forecast accuracy in winter, which indicates their robustness.

Corresponding author: T. Ishibashi, ishibasi@mri-jma.go.jp

Abstract

In data assimilation for NWP, accurate estimation of error covariance matrices (ECMs) and their use are essential to improve NWP accuracy. The objective of this study is to estimate ECMs of all observations and background variables using sampling statistics, and improve global NWP accuracy by using them. This study presents the first results of such all ECM refinement. ECM diagnostics combining multiple methods, and analysis and forecast cycle experiments were performed on the JMA global NWP system, where diagonal components of all ECMs and off-diagonal components of radiance observations are refined. The ECM diagnostic results are as follows: 1) the diagnosed error standard deviations (SDs) are generally much smaller than those of the JMA operational system (CNTL); 2) interchannel correlations in humidity-sensitive radiance errors are much larger than 0.2; and 3) horizontal correlation distances of AMSU-A are ~50 km, excluding channel 4. The experimental results include the following: 1) the diagnosed ECMs generally improve forecast accuracy over CNTL even without additional tunings; 2) the supplemental tuning parameter, which is the deflation factor (0.6 in SD) applied for the estimated ECMs of nonsatellite conventional data and GPS radio occultation data, statistically significantly improves forecast accuracy; 3) this value 0.6 is set as the same value as the ratio of the estimated background error SD to that in CNTL; 4) high-density assimilation (10 times) of AMSU-A is better than CNTL, not better than that with 5 times; and 5) ECMs estimated using boreal summer data can improve forecast accuracy in winter, which indicates their robustness.

Corresponding author: T. Ishibashi, ishibasi@mri-jma.go.jp
Save