• Baker, W. E., and Coauthors, 2014: Lidar-measured wind profiles: The missing link in the global observing system. Bull. Amer. Meteor. Soc., 95, 543564, https://doi.org/10.1175/BAMS-D-12-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgart, M., M. Riemer, V. Wirth, F. Teubler, and S. T. Lang, 2018: Potential vorticity dynamics of forecast errors: A quantitative case study. Mon. Wea. Rev., 146, 14051425, https://doi.org/10.1175/MWR-D-17-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belmonte Rivas, M., and A. Stoffelen, 2019: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci., 15, 831852, https://doi.org/10.5194/os-15-831-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104, https://doi.org/10.1029/2005JD006301.

  • Cardinali, C., L. Rukhovets, and J. Tenenbaum, 2004: Jet stream analysis and forecast errors using GADS aircraft observations in the DAO, ECMWF, and NCEP models. Mon. Wea. Rev., 132, 764779, https://doi.org/10.1175/1520-0493(2004)132<0764:JSAAFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagnon, J., S. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 12701282, https://doi.org/10.1002/qj.2037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chouza, F., O. Reitebuch, A. Benedetti, and B. Weinzierl, 2016: Saharan dust long-range transport across the Atlantic studied by an airborne Doppler wind lidar and the MACC model. Atmos. Chem. Phys., 16, 11 58111 600, https://doi.org/10.5194/acp-16-11581-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, H. C., and M. Didone, 2013: Diagnosis and dynamics of forecast error growth. Mon. Wea. Rev., 141, 24832501, https://doi.org/10.1175/MWR-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dibbern, J., W. Monna, J. Nash, and G. Peters, Eds., 2001: Development of VHF/UHF wind profilers and vertical sounders for use in European observing systems. Final Rep., COST Action 76, European Commission, 350 pp.

  • Dolman, B. K., I. M. Reid, and C. Tingwell, 2018: Stratospheric tropospheric wind profiling radars in the Australian network. Earth Planets Space, 70, 170, https://doi.org/10.1186/s40623-018-0944-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ESA, 2008: ADM-Aeolus science report. ESA SP-1311, 121 pp., http://esamultimedia.esa.int/docs/EarthObservation/SP-1311ADM-Aeolus_Final.pdf.

  • Ferreira, A. P., J. M. Castanheira, and L. Gimeno, 2015: Water vapour stratification and dynamical warming behind the sharpness of the Earth’s midlatitude tropopause. Quart. J. Roy. Meteor. Soc., 142, 957970, https://doi.org/10.1002/qj.2697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S., C. Dunning, J. Methven, G. Masato, and J. Chagnon, 2014: Systematic model forecast error in Rossby wave structure. Geophys. Res. Lett., 41, 29792987, https://doi.org/10.1002/2014GL059282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B., J. Methven, and M. H. P. Ambaum, 2016: Rossby wave propagation on potential vorticity fronts with finite width. J. Fluid Mech., 794, 775797, https://doi.org/10.1017/jfm.2016.180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B., J. Methven, and M. H. P. Ambaum, 2018: An adiabatic mechanism for the reduction of jet meander amplitude by potential vorticity filamentation. J. Atmos. Sci., 75, 40914106, https://doi.org/10.1175/JAS-D-18-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B., J. Methven, C. Sanchez, and A. Schäfler, 2020: Diabatic generation of negative potential vorticity and its impact on the North Atlantic jet stream. Quart. J. Roy. Meteor. Soc., 146, 14771497, https://doi.org/10.1002/QJ.3747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horányi, A., C. Cardinali, M. Rennie, and L. Isaksen, 2015: The assimilation of horizontal line-of-sight wind information into the ECMWF data assimilation and forecasting system. Part II: The impact of degraded wind observations. Quart. J. Roy. Meteor. Soc., 141, 12331243, https://doi.org/10.1002/qj.2551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and I. N. James, Eds., 2014: Rotation in the atmosphere. Fluid Dynamics of the Midlatitude Atmosphere, John Wiley and Sons, 125–148, https://doi.org/10.1002/9781118526002.ch8.

    • Crossref
    • Export Citation
  • Houchi, K., A. Stoffelen, G. J. Marseille, and J. De Kloe, 2010: Comparison of wind and wind shear climatologies derived from high-resolution radiosondes and the ECMWF model. J. Geophys. Res., 115, D22123, https://doi.org/10.1029/2009JD013196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, T., and Coauthors, 2017: On the representation error in data assimilation. Quart. J. Roy. Meteor. Soc., 144, 12571278, https://doi.org/10.1002/qj.3130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lux, O., C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, S. Rahm, A. Schäfler, and O. Reitebuch, 2018: Airborne wind LIDAR observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus. Atmos. Meas. Tech., 11, 32973322, https://doi.org/10.5194/amt-11-3297-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malardel, S., N. Wedi, W. Deconinck, M. Diamantakis, C. Kühnlein, G. Mozdzynski, M. Hamrud, and P. Smolarkiewicz, 2016: A new grid for the IFS. ECMWF Newsletter, No. 146, ECMWF, Reading, United Kingdom, 23–28, https://www.ecmwf.int/sites/default/files/elibrary/2016/17262-new-grid-ifs.pdf.

  • Marksteiner, U., C. Lemmerz, O. Lux, S. Rahm, A. Schäfler, B. Witschas, and O. Reitebuch, 2018: Calibrations and wind observations of an airborne direct-detection wind LIDAR supporting ESA’s Aeolus mission. Remote Sens., 10, 2056, https://doi.org/10.3390/rs10122056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. Davies, 2010: Tropopause-level waveguide. J. Atmos. Sci., 67, 866879, https://doi.org/10.1175/2009JAS2995.1.

  • Met Office, 2008: Wind profiler observations, part of the Met Office MetDB system. NCAS British Atmospheric Data Centre, accessed 15 May 2018, https://catalogue.ceda.ac.uk/uuid/9e22544a66ba7aa902ae431b1ed609d6.

  • Oertel, A., M. Boettcher, H. Joos, M. Sprenger, H. Konow, M. Hagen, and H. Wernli, 2019: Convective activity in an extratropical cyclone and its warm conveyor belt - a case study combining observations and a convection-permitting model simulation. Quart. J. Roy. Meteor. Soc., 145, 14061426, https://doi.org/10.1002/qj.3500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., W. J. Randel, B. L. Gary, M. J. Mahoney, and E. J. Hintsa, 2004: Definitions and sharpness of the extratropical tropopause: A trace gas perspective. J. Geophys. Res., 109, D23103, https://doi.org/10.1029/2004JD004982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, R. A., 2016: On the impact and benefits of AMDAR observations in operational forecasting—Part I: A review of the impact of automated aircraft wind and temperature reports. Bull. Amer. Meteor. Soc., 97, 585602, https://doi.org/10.1175/BAMS-D-14-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilch Kedzierski, R., L. Neef, and K. Matthes, 2016: Tropopause sharpening by data assimilation. Geophys. Res. Lett., 43, 82988305, https://doi.org/10.1002/2016GL069936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitebuch, O., 2012: The spaceborne wind lidar mission ADM-Aeolus. Atmospheric Physics: Background, Methods, Trends, U. Schumann, Ed., Springer Series on Research Topics in Aerospace, 815–827.

    • Crossref
    • Export Citation
  • Reitebuch, O., C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, 2009: The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument. J. Atmos. Oceanic Technol., 26, 25012515, https://doi.org/10.1175/2009JTECHA1309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitebuch, O., C. Lemmerz, O. Lux, U. Marksteiner, B. Witschas, and R. R. Neely, 2017: WindVal: Joint DLR-ESA-NASA wind validation for Aeolus. ESA Final Rep. 4000114053/15/NL/FF/gp, 146 pp., https://earth.esa.int/documents/10174/134665/WindVal-Campaign-Final-Report.

  • Rickard, G. J., R. W. Lunnon, and J. Tenenbaum, 2001: The Met Office upper air winds: Prediction and verification in the context of commercial aviation data. Meteor. Appl., 8, 351360, https://doi.org/10.1017/S1350482701003115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffin, L., S. Gray, J. Methven, and K. Williams, 2017: Processes maintaining tropopause sharpness in numerical models. J. Geophys. Res. Atmos., 122, 96119627, https://doi.org/10.1002/2017JD026879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A., A. Dörnbrack, C. Kiemle, S. Rahm, and M. Wirth, 2010: Tropospheric water vapor transport as determined from airborne lidar measurements. J. Atmos. Oceanic Technol., 27, 20172030, https://doi.org/10.1175/2010JTECHA1418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A., and Coauthors, 2018: The North Atlantic waveguide and downstream impact experiment. Bull. Amer. Meteor. Soc., 99, 16071637, https://doi.org/10.1175/BAMS-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schindler, M., M. Weissmann, A. Schäfler, and G. Radnoti, 2020: The impact of dropsonde and extra radiosonde observations during NAWDEX in autumn 2016. Mon. Wea. Rev., 148, 809824, https://doi.org/10.1175/MWR-D-19-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwierz, C., S. Dirren, and H. Davies, 2004: Forced waves on a zonally aligned jet stream. J. Atmos. Sci., 61, 7387, https://doi.org/10.1175/1520-0469(2004)061<0073:FWOAZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spreitzer, E., R. Attinger, M. Boettcher, R. Forbes, H. Wernli, and H. Joos, 2019: Modification of potential vorticity near the tropopause by nonconservative processes in the ECMWF model. J. Atmos. Sci., 76, 17091726, https://doi.org/10.1175/JAS-D-18-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., and Coauthors, 2005: The atmospheric dynamics mission for global wind field measurement. Bull. Amer. Meteor. Soc., 86, 7388, https://doi.org/10.1175/BAMS-86-1-73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., L. Haimberger, M. P. Scheele, and H. Wernli, 2001: An intercomparison of results from three trajectory models. Meteor. Appl., 8, 127135, https://doi.org/10.1017/S1350482701002018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tenenbaum, J., 1991: Jet stream winds: Comparisons of analyses with independent aircraft data over southwest Asia. Wea. Forecasting, 6, 320336, https://doi.org/10.1175/1520-0434(1991)006<0320:JSWCOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tenenbaum, J., 1996: Jet stream winds: Comparisons of aircraft observations with analyses. Wea. Forecasting, 11, 188197, https://doi.org/10.1175/1520-0434(1996)011<0188:JSWCOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR–Earth Observing Laboratory, 1993: NCAR Airborne Vertical Atmospheric Profiling System (AVAPS). UCAR/NCAR–Earth Observing Laboratory, accessed 22 March 2017, https://doi.org/10.5065/D66W9848.

    • Crossref
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. J., and Coauthors, 2015: A long-term, high-quality, high-vertical-resolution GPS dropsonde dataset for hurricane and other studies. Bull. Amer. Meteor. Soc., 96, 961973, https://doi.org/10.1175/BAMS-D-13-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weissmann, M., R. Busen, A. Dörnbrack, S. Rahm, and O. Reitebuch, 2005: Targeted observations with an airborne wind lidar. J. Atmos. Oceanic Technol., 22, 17061719, https://doi.org/10.1175/JTECH1801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winston, H., 2004: Vaisala wind profilers support: Modernization of upper-air data collection network in the UK. Vaisala News, 164, 2425.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., M. Riemer, E. K. Chang, and O. Martius, 2018: Rossby wave packets on the midlatitude waveguide—A review. Mon. Wea. Rev., 146, 19652001, https://doi.org/10.1175/MWR-D-16-0483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witschas, B., S. Rahm, A. Dörnbrack, J. Wagner, and M. Rapp, 2017: Airborne wind lidar measurements of vertical and horizontal winds for the investigation of orographically induced gravity waves. J. Atmos. Oceanic Technol., 34, 13711386, https://doi.org/10.1175/JTECH-D-17-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witschas, B., C. Lemmerz, A. Geiß, O. Lux, U. Marksteiner, S. Rahm, O. Reitebuch, and F. Weiler, 2020: First validation of Aeolus wind observations by airborne Doppler wind lidar measurements. Atmos. Meas. Tech. Discuss., 13, 23812396, https://doi.org/10.5194/amt-13-2381-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 178 178 21
Full Text Views 20 20 6
PDF Downloads 25 25 5

Observation of Jet Stream Winds during NAWDEX and Characterization of Systematic Meteorological Analysis Errors

View More View Less
  • 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
  • 2 National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom
  • 3 Department of Meteorology, University of Reading, Reading, United Kingdom
  • 4 Naval Research Laboratory, Monterey, California
  • 5 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
© Get Permissions
Restricted access

Abstract

Observations across the North Atlantic jet stream with high vertical resolution are used to explore the structure of the jet stream, including the sharpness of vertical wind shear changes across the tropopause and the wind speed. Data were obtained during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) by an airborne Doppler wind lidar, dropsondes, and a ground-based stratosphere–troposphere radar. During the campaign, small wind speed biases throughout the troposphere and lower stratosphere of only −0.41 and −0.15 m s−1 are found, respectively, in the ECMWF and Met Office analyses and short-term forecasts. However, this study finds large and spatially coherent wind errors up to ±10 m s−1 for individual cases, with the strongest errors occurring above the tropopause in upper-level ridges. ECMWF and Met Office analyses indicate similar spatial structures in wind errors, even though their forecast models and data assimilation schemes differ greatly. The assimilation of operational observational data brings the analyses closer to the independent verifying observations, but it cannot fully compensate for the forecast error. Models tend to underestimate the peak jet stream wind, the vertical wind shear (by a factor of 2–5), and the abruptness of the change in wind shear across the tropopause, which is a major contribution to the meridional potential vorticity gradient. The differences are large enough to influence forecasts of Rossby wave disturbances to the jet stream with an anticipated effect on weather forecast skill even on large scales.

This article is included in the Waves to Weather (W2W) Special Collection.

Corresponding author: Dr. Andreas Schäfler, andreas.schaefler@dlr.de

Abstract

Observations across the North Atlantic jet stream with high vertical resolution are used to explore the structure of the jet stream, including the sharpness of vertical wind shear changes across the tropopause and the wind speed. Data were obtained during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) by an airborne Doppler wind lidar, dropsondes, and a ground-based stratosphere–troposphere radar. During the campaign, small wind speed biases throughout the troposphere and lower stratosphere of only −0.41 and −0.15 m s−1 are found, respectively, in the ECMWF and Met Office analyses and short-term forecasts. However, this study finds large and spatially coherent wind errors up to ±10 m s−1 for individual cases, with the strongest errors occurring above the tropopause in upper-level ridges. ECMWF and Met Office analyses indicate similar spatial structures in wind errors, even though their forecast models and data assimilation schemes differ greatly. The assimilation of operational observational data brings the analyses closer to the independent verifying observations, but it cannot fully compensate for the forecast error. Models tend to underestimate the peak jet stream wind, the vertical wind shear (by a factor of 2–5), and the abruptness of the change in wind shear across the tropopause, which is a major contribution to the meridional potential vorticity gradient. The differences are large enough to influence forecasts of Rossby wave disturbances to the jet stream with an anticipated effect on weather forecast skill even on large scales.

This article is included in the Waves to Weather (W2W) Special Collection.

Corresponding author: Dr. Andreas Schäfler, andreas.schaefler@dlr.de
Save