• Bauer, P., A. J. Geer, P. Lopez, and D. Salmond, 2010: Direct 4D-var assimilation of all-sky radiances. Part I: Implementation. Quart. J. Roy. Meteor. Soc., 136, 18681885, https://doi.org/10.1002/qj.659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., A. J. Geer, and S. J. English, 2012: Evaluation of the microwave ocean surface emissivity model FASTEM-5 in the IFS. ECMWF Tech. Memo. 667, 18 pp., https://www.ecmwf.int/en/elibrary/8303-evaluation-microwave-ocean-surface-emissivity-model-fastem-5-ifs.

  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambon, P., and A. J. Geer, 2017: All-sky assimilation of Megha-Tropiques/SAPHIR radiances in the ECWMF numerical weather prediction system. ECMWF Tech. Memo. 802, 45 pp., https://doi.org/10.21957/4h085eb9.

    • Crossref
    • Export Citation
  • Chen, J.-H., and Coauthors, 2019a: Advancements in hurricane prediction with NOAA’s next-generation forecast system. Geophys. Res. Lett., 46, 44954501, https://doi.org/10.1029/2019GL082410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., S.-J. Lin, L. Zhou, X. Chen, S. Rees, M. Bender, and M. Morin, 2019b: Evaluation of tropical cyclone forecasts in the Next Generation Global Prediction System. Mon. Wea. Rev., 147, 34093428, https://doi.org/10.1175/MWR-D-18-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., 2003: Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurements. J. Geophys. Res., 108, 4573, https://doi.org/10.1029/2003JD003469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11, 14911499, https://doi.org/10.1364/JOSAA.11.001491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • English, S. J., and T. J. Hewison, 1998: A fast generic millimeter-wave emissivity model. Proc. SPIE, 3503, 288300, https://doi.org/10.1117/12.319490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, R., A. J. Geer, K. Lonitz, and M. Ahlgrimm, 2016: Reducing systematic errors in cold-air outbreaks. ECMWF Newsletter, No. 146, ECMWF, Reading, United Kingdom, 17–22, https://www.ecmwf.int/en/elibrary/17261-reducing-systematic-errors-cold-air-outbreaks.

  • Geer, A. J., and P. Bauer, 2010: Enhanced use of all-sky microwave observations sensitive to water vapor, cloud and precipitation. ECMWF Tech. Memo. 620, 41 pp., https://www.ecmwf.int/sites/default/files/elibrary/2010/9518-enhanced-use-all-sky-microwave-observations-sensitive-water-vapour-cloud-and-precipitation.pdf.

  • Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data assimilation. Quart. J. Roy. Meteor. Soc., 137, 20242037, https://doi.org/10.1002/qj.830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and F. Baordo, 2014: Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies. Atmos. Meas. Tech., 7, 18391860, https://doi.org/10.5194/amt-7-1839-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geer, A. J., P. Bauer, and C. W. O’Dell, 2009: A revised cloud overlap scheme for fast microwave radiative transfer. J. Appl. Meteor. Climatol., 48, 22572270, https://doi.org/10.1175/2009JAMC2170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geer, A. J., P. Bauer, and S. J. English, 2012: Assimilating AMSU-A temperature sounding channels in the presence of cloud and precipitation. ECMWF Tech. Memo. 670, 41 pp., https://www.ecmwf.int/sites/default/files/elibrary/2012/9514-assimilating-amsu-temperature-sounding-channels-presence-cloud-and-precipitation.pdf.

  • Geer, A. J., F. Baordo, N. Bormann, and S. English, 2014: All-sky assimilation of microwave humidity sounders. ECMWF Tech. Memo. 741, 57 pp., https://www.ecmwf.int/sites/default/files/elibrary/2014/9507-all-sky-assimilation-microwave-humidity-sounders.pdf.

  • Geer, A. J., and Coauthors, 2017: The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quart. J. Roy. Meteor. Soc., 143, 31893206, https://doi.org/10.1002/qj.3172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and Coauthors, 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 11911217, https://doi.org/10.1002/qj.3202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2001: Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophys. Res., 106, 29432953, https://doi.org/10.1029/2000JD900616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM)–Version 1. NOAA Tech. Rep. NESDIS 122, 33 pp., https://repository.library.noaa.gov/view/noaa/1157.

  • Hansen, J. E., and I. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610, https://doi.org/10.1007/BF00168069.

  • Heymsfield, A. J., and G. M. McFarquhar, 1996: High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci., 53, 24242451, https://doi.org/10.1175/1520-0469(1996)053<2424:HAOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingleby, N., A. Lorenc, K. Ngan, F. Rawlins, and D. Jackson, 2013: Improved variational analyses using a nonlinear humidity control variable. Quart. J. Roy. Meteor. Soc., 139, 18751887, https://doi.org/10.1002/qj.2073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kazumori, M., and S. J. English, 2015: Use of the ocean surface wind direction signal in microwave radiance assimilation. Quart. J. Roy. Meteor. Soc., 141, 13541375, https://doi.org/10.1002/qj.2445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kazumori, M., and T. Kadowaki, 2017: Development of an all-sky assimilation of microwave imager and sounder radiances for the Japan Meteorological Agency global numerical weather prediction system. 21st Int. TOVS Study Conf., Darmstadt, Germany, International ATOVS Working Group, 1–9, https://cimss.ssec.wisc.edu/itwg/itsc/itsc21/proceedings/5.04_kazumori.pdf.

  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, https://doi.org/10.1175/MWR-D-13-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009a: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, R. M. Errico, and R. Yang, 2009b: Improving incremental balance in the GSI 3DVar analysis system. Mon. Wea. Rev., 137, 10461060, https://doi.org/10.1175/2008MWR2623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 1997: A finite-volume integration method for computing pressure gradient force in general vertical coordinates. Quart. J. Roy. Meteor. Soc., 123, 17491762, https://doi.org/10.1002/QJ.49712354214.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, E. H., A. Collard, R. Sun, Y. Zhu, P. van Delst, D. Groff, and J. Derber, 2015: Inter comparison of CRTM and RTTOV in NCEP global model. 20th Int. TOVS Study Conf., Lake Geneva, WI, International ATOVS Working Group, 1–9, https://cimss.ssec.wisc.edu/itwg/itsc/itsc20/papers/8p_01_liu_paper.pdf.

  • Liu, E. H., and Coauthors, 2019: EMC contributions to CRTM development and validation. JCSDA Quarterly, No. 63, Joint Center for Satellite Data Assimilation, Boulder, CO, 1–9 https://doi.org/10.25923/c23x-ac34.

    • Crossref
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570, https://doi.org/10.1175/2008BAMS2486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and F. Weng, 2006: Advanced doubling adding method for radiative transfer in planetary atmospheres. J. Atmos. Sci., 63, 34593465, https://doi.org/10.1175/JAS3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and S. Boukabara, 2014: Community Radiative Transfer Model (CRTM) applications in supporting the Suomi National Polar-Orbiting Partnership (SNPP) mission validation and verification. Remote Sens. Environ., 140, 744754, https://doi.org/10.1016/j.rse.2013.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., F. Weng, and S. J. English, 2011: An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sens., 49, 12381250, https://doi.org/10.1109/TGRS.2010.2064779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonitz, K., and A. J. Geer, 2015: New screening of cold-air outbreak regions used in 4D-Var all-sky assimilation. EUMETSAT/ECMWF Fellowship Programme Research Rep. 35, 15 pp., https://www.ecmwf.int/en/elibrary/10777-new-screening-cold-air-outbreak-regions-used-4d-var-all-sky-assimilation.

  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migliorini, S., A. Lorenc, and W. Bell, 2017: A moisture-incrementing operator for the assimilation of humidity and cloud-sensitive observations: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 144, 443457, https://doi.org/10.1002/qj.3216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2017: Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Wea. Rev., 145, 10631081, https://doi.org/10.1175/MWR-D-16-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., H. L. Pan, and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Tech. Procedures Bull. 484, 14 pp., http://docs.lib.noaa.gov/rescue/wb_technical_procedures_bulletin/ TPB_484.pdf.

  • Okamoto, K., 2013: Assimilation of overcast cloudy infrared radiances of the geostationary MTSAT-1R imager. Quart. J. Roy. Meteor. Soc., 139, 715730, https://doi.org/10.1002/qj.1994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okamoto, K., A. P. McNally, and W. Bell, 2014: Progress towards the assimilation of all-sky infrared radiances: An evaluation of cloud effects. Quart. J. Roy. Meteor. Soc., 140, 16031614, https://doi.org/10.1002/qj.2242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sieron, S. B., E. E. Clothiaux, F. Zhang, Y. Lu, and J. A. Otkin, 2017: Comparison of using distribution-specific versus effective radius methods for hydrometeor single-scattering properties for all-sky microwave satellite radiance simulations with different microphysics parameterization schemes. J. Geophys. Res. Atmos., 122, 70277046, https://doi.org/10.1002/2017JD026494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sieron, S. B., F. Zhang, E. E. Clothiaux, L. N. Zhang, and Y. Lu, 2018: Representing precipitation ice species with both spherical and nonspherical particles for radiative transfer modeling of microphysics-consistent cloud microwave scattering properties. J. Adv. Model. Earth Syst., 10, 10111028, https://doi.org/10.1002/2017MS001226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stegmann, P. G., G. Tang, P. Yang, and B. T. Johnson, 2018: A stochastic model for density-dependent microwave snow- and graupel scattering coefficients of the NOAA JCSDA Community Radiative Transfer Model. J. Quant. Spectrosc. Radiat. Transfer., 211, 924, https://doi.org/10.1016/j.jqsrt.2018.02.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and J. Berner, 2008: A stochastic convective approach to account for model uncertainty due to unresolved humidity variability. J. Geophys. Res., 113, D18101, https://doi.org/10.1029/2007JD009284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Delst, P., E. H. Liu, and L. Bi, 2016: Cloud fraction in the CRTM. JCSDA Office Note CRTM-4, Rrev. 71147, 36 pp.

  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble–variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for the NCEP Global Forecast System. Mon. Wea. Rev., 142, 33033325, https://doi.org/10.1175/MWR-D-13-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, F., L. Zhao, R. R. Ferraro, G. Poe, X. Li, and N. C. Grody, 2003: Advanced Microwave Sounding Unit cloud and precipitation algorithms. Radio Sci., 38, 8086, https://doi.org/10.1029/2002RS002679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, https://doi.org/10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482, https://doi.org/10.1175/2007MWR2018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Q., and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125, 19311953, https://doi.org/10.1175/1520-0493(1997)125<1931:APCSFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., S. Lin, J. Chen, L. Harris, X. Chen, and S. Rees, 2019: Toward convective-scale prediction within the Next Generation Global Prediction System. Bull. Amer. Meteor. Soc., 100, 12251243, https://doi.org/10.1175/BAMS-D-17-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Jung, 2014a: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 14791492, https://doi.org/10.1002/qj.2233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Coauthors, 2014b: Variational bias correction in the NCEP’s data assimilation system. Preprints, 19th Int. TOVS Study Conf., Jeju Island, South Korea, International ATOVS Working Group, 10.02, http://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/papers/10_02_zhu.pdf.

  • Zhu, Y., and Coauthors, 2016: All-sky microwave radiance assimilation in NCEP’s GSI analysis system. Mon. Wea. Rev., 144, 47094735, https://doi.org/10.1175/MWR-D-15-0445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., G. Gayno, R. J. Purser, X. Su, and R. Yang, 2019: Expansion of the all-sky radiance assimilation to ATMS at NCEP. Mon. Wea. Rev., 147, 26032620, https://doi.org/10.1175/MWR-D-18-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 60 60 44
Full Text Views 6 6 4
PDF Downloads 5 5 2

Multiple Hydrometeors All-Sky Microwave Radiance Assimilation in FV3GFS

View More View Less
  • 1 SAIC, Princeton, New Jersey
  • 2 NOAA/GFDL, Princeton, New Jersey
  • 3 I.M. Systems Group, NCEP Environmental Modeling Center, College Park, Maryland
  • 4 Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
  • 5 SRG, NCEP Environmental Modeling Center, College Park, Maryland
  • 6 NESDIS, and University of Maryland, College Park, College Park, Maryland
  • 7 NESDIS/STAR, College Park, Maryland
© Get Permissions
Restricted access

Abstract

Motivated by the use of the GFDL microphysics scheme in the Finite-Volume Cubed-Sphere Dynamical Core Global Forecast System (FV3GFS), the all-sky radiance assimilation framework has been expanded to include precipitating hydrometeors. Adding precipitating hydrometeors allows the assimilation of precipitation-affected radiance in addition to cloudy radiance. In this upgraded all-sky framework, the five hydrometeors, including cloud liquid water, cloud ice, rain, snow, and graupel, are the new control variables, replacing the original cloud water control variable. The Community Radiative Transfer Model (CRTM) was interfaced with the newly added precipitating hydrometeors. Subgrid cloud variability was considered by using the average cloud overlap scheme. Multiple scattering radiative transfer was activated in the upgraded framework. Radiance observations from the Advanced Microwave Sounding Unit-A (AMSU-A) and the Advanced Technology Microwave Sounder (ATMS) over ocean were assimilated in all-sky approach. This new constructed all-sky framework shows neutral to positive impact on overall forecast skill. Improvement was found in 500-hPa geopotential height forecast in both Northern and Southern Hemispheres. Temperature forecast was also improved at 850 hPa in the Southern Hemisphere and the tropics.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Dr. Mingjing Tong, mingjing.tong@noaa.gov

Abstract

Motivated by the use of the GFDL microphysics scheme in the Finite-Volume Cubed-Sphere Dynamical Core Global Forecast System (FV3GFS), the all-sky radiance assimilation framework has been expanded to include precipitating hydrometeors. Adding precipitating hydrometeors allows the assimilation of precipitation-affected radiance in addition to cloudy radiance. In this upgraded all-sky framework, the five hydrometeors, including cloud liquid water, cloud ice, rain, snow, and graupel, are the new control variables, replacing the original cloud water control variable. The Community Radiative Transfer Model (CRTM) was interfaced with the newly added precipitating hydrometeors. Subgrid cloud variability was considered by using the average cloud overlap scheme. Multiple scattering radiative transfer was activated in the upgraded framework. Radiance observations from the Advanced Microwave Sounding Unit-A (AMSU-A) and the Advanced Technology Microwave Sounder (ATMS) over ocean were assimilated in all-sky approach. This new constructed all-sky framework shows neutral to positive impact on overall forecast skill. Improvement was found in 500-hPa geopotential height forecast in both Northern and Southern Hemispheres. Temperature forecast was also improved at 850 hPa in the Southern Hemisphere and the tropics.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Dr. Mingjing Tong, mingjing.tong@noaa.gov
Save