• Ahmad, N. N., D. P. Bacon, M. S. Hall, and A. Sarma, 2005: Application of the multidimensional positive definite advection transport algorithm (MPDATA) to environmental modelling on adaptive unstructured grids. Int. J. Numer. Methods Fluids, 50, 12471268, https://doi.org/10.1002/FLD.1113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 1, 119143, https://doi.org/10.1016/0021-9991(66)90015-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsara, D. S., and C.-W. Shu, 2000: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys., 160, 405452, https://doi.org/10.1006/jcph.2000.6443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, J. R., and A. McDonald, 1982: Multiply-upstream, semi-Lagrangian advective schemes: Analysis and application to a multi-level primitive equation model. Mon. Wea. Rev., 110, 18311842, https://doi.org/10.1175/1520-0493(1982)110<1831:MUSLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and D. R. Durran, 2008: Selective monotonicity preservation in scalar advection. J. Comput. Phys., 227, 51605183, https://doi.org/10.1016/j.jcp.2008.01.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bott, A., 1989: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117, 10061016, https://doi.org/10.1175/1520-0493(1989)117<1006:APDASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colella, P., 1990: Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys., 87, 171200, https://doi.org/10.1016/0021-9991(90)90233-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotter, C. J., J. Frank, and S. Reich, 2007: The remapped particle-mesh semi-Lagrangian advection scheme. Quart. J. Roy. Meteor. Soc., 133, 251260, https://doi.org/10.1002/qj.11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2010: Numerical Methods for Fluid Dynamics: With Applications to Geophysics. Vol. 32. Springer Science and Business Media, 465 pp.

    • Crossref
    • Export Citation
  • Godunov, S. K., 1959: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik, 89 (3), 271306.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2008: Toward the mitigation of spurious cloud-edge supersaturation in cloud models. Mon. Wea. Rev., 136, 12241234, https://doi.org/10.1175/2007MWR2283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, A. B., J. Brandt, J. H. Christensen, and E. Kaas, 2011: Semi-Lagrangian methods in air pollution models. Geosci. Model Dev., 4, 511541, https://doi.org/10.5194/gmd-4-511-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilotoviz, E., A. P. Khain, N. Benmoshe, V. T. J. Phillips, and A. V. Ryzhkov, 2016: Effect of aerosols on freezing drops, hail, and precipitation in a midlatitude storm. J. Atmos. Sci., 73, 109144, https://doi.org/10.1175/JAS-D-14-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilotoviz, E., A. Khain, A. V. Ryzhkov, and J. C. Snyder, 2018: Relationship between aerosols, hail microphysics, and ZDR columns. J. Atmos. Sci., 75, 17551781, https://doi.org/10.1175/JAS-D-17-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juang, H.-M. H., and S.-Y. Hong, 2010: Forward semi-Lagrangian advection with mass conservation and positive definiteness for falling hydrometeors. Mon. Wea. Rev., 138, 17781791, https://doi.org/10.1175/2009MWR3109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaas, S. E., 2008: A simple and efficient locally mass conserving semi-Lagrangian transport scheme. Tellus, 60A, 305320, https://doi.org/10.1111/j.1600-0870.2007.00293.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemm, F., 2011: A comparative study of TVD-limiters–well-known limiters and an introduction of new ones. Int. J. Numer. Methods Fluids, 67, 404440, https://doi.org/10.1002/fld.2357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and M. Pinsky, 2018: Physical Processes in Clouds and Cloud Modeling. Cambridge University Press, 642 pp.

    • Crossref
    • Export Citation
  • Khain, A. P., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146, https://doi.org/10.1016/j.atmosres.2010.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and et al. , 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., and J. Thuburn, 2012: Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics. Quart. J. Roy. Meteor. Soc., 138, 906918, https://doi.org/10.1002/qj.986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., M. K. MacVean, and A. P. Lock, 1995: The flux integral method for multidimensional convection and diffusion. Appl. Math. Model., 19, 333342, https://doi.org/10.1016/0307-904X(95)00017-E.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeVeque, R. J., Ed., 1990: Conservative methods for nonlinear problems. Numerical Methods for Conservation Laws, Springer, 122–135.

    • Crossref
    • Export Citation
  • LeVeque, R. J., 2002: Finite Volume Methods for Hyperbolic Problems. Vol. 31. Cambridge University Press, 558 pp.

    • Crossref
    • Export Citation
  • Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 20462070, https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, A., 1984: Accuracy of multiplay-upstream, semi-Lagrangian advective schemes. Mon. Wea. Rev., 112, 12671275, https://doi.org/10.1175/1520-0493(1984)112<1267:AOMUSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., A. Jensen, J. Harrington, and J. Milbrandt, 2016: Advection of coupled hydrometeor quantities in bulk cloud microphysics schemes. Mon. Wea. Rev., 144, 28092829, https://doi.org/10.1175/MWR-D-15-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. Witte, G. H. Bryan, J. Y. Harrington, and Z. J. Lebo, 2018: Broadening of modeled cloud droplet spectra using bin microphysics in an Eulerian spatial domain. J. Atmos. Sci., 75, 40054030, https://doi.org/10.1175/JAS-D-18-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., R. Tanaka, T. Yabe, and K. Takizawa, 2001: Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique. J. Comput. Phys., 174, 171207, https://doi.org/10.1006/jcph.2001.6888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovtchinnikov, M., and R. C. Easter, 2009: Nonlinear advection algorithms applied to interrelated tracers: Errors and implications for modeling aerosol–cloud interactions. Mon. Wea. Rev., 137, 632644, https://doi.org/10.1175/2008MWR2626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, A., 1993: A quasi-conservative version of the semi-Lagrangian advection scheme. Mon. Wea. Rev., 121, 621629, https://doi.org/10.1175/1520-0493(1993)121<0621:AQCVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, A., 1982: A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteor. Soc. Japan, 60, 319325, https://doi.org/10.2151/jmsj1965.60.1_319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. P. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2006: Positive-definite and monotonic limiters for unrestricted-time-step transport schemes. Mon. Wea. Rev., 134, 22412250, https://doi.org/10.1175/MWR3170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1982: The multi-dimensional Crowly advection scheme. Mon. Wea. Rev., 110, 19681983, https://doi.org/10.1175/1520-0493(1982)110<1968:TMDCAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimensional positive definite advection transport algorithm: Nonoscillatory option. J. Comput. Phys., 86, 355375, https://doi.org/10.1016/0021-9991(90)90105-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobhani, N., and D. Del Vento, 2017: Performance analysis and optimization of the Weather Research and Forecasting Model (WRF) advection schemes. Third Symp. on High Performance Computing for Weather, Water, and Climate, Seattle, WA, Amer. Meteor. Soc., 3.4, https://ams.confex.com/ams/97Annual/webprogram/Paper315832.html.

  • Sweby, P. K., 1984: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal., 21, 9951011, https://doi.org/10.1137/0721062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuburn, J., 1997: TVD schemes, positive schemes, and the universal limiter. Mon. Wea. Rev., 125, 19901993, https://doi.org/10.1175/1520-0493(1997)125<1990:TSPSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremback, G. J., J. Powell, W. R. Cotton, and R. A. Pielke, 1987: The forward-in-time upstream advection scheme: Extensions to higher orders. Mon. Wea. Rev., 115, 540555, https://doi.org/10.1175/1520-0493(1987)115<0540:TFTUAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Versteeg, H. K., and W. Malalasekera, 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, 503 pp.

  • Wang, H., W. C. Skamarock, and G. Feingold, 2009: Evaluation of scalar advection schemes in the advanced research WRF model using large-eddy simulations of aerosol–cloud interactions. Mon. Wea. Rev., 137, 25472558, https://doi.org/10.1175/2009MWR2820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2007: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Japan, 85B, 241269, https://doi.org/10.2151/jmsj.85B.241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, F., and T. Yabe, 2001: Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation. J. Comput. Phys., 170, 498522, https://doi.org/10.1006/jcph.2001.6746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., D. A. Randall, and M. F. Khairoutdinov, 2011: Cloud modeling tests of the ULTIMATE–MACHO scalar advection scheme. Mon. Wea. Rev., 139, 32483264, https://doi.org/10.1175/MWR-D-10-05044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zalesak, S. T., 1979: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31, 335362, https://doi.org/10.1016/0021-9991(79)90051-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zerroukat, M., N. Wood, and A. Staniforth, 2009: An improved version of SLICE for conservative monotonic remapping on a C-grid. Quart. J. Roy. Meteor. Soc., 135, 541546, https://doi.org/10.1002/qj.369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., C. Jiang, D. Liang, and L. Cheng, 2015: A review on TVD schemes and a refined flux-limiter for steady-state calculations. J. Comput. Phys., 302, 114154, https://doi.org/10.1016/j.jcp.2015.08.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 66 66 11
Full Text Views 40 40 5
PDF Downloads 39 39 7

A Computationally Efficient Linear Semi-Lagrangian Scheme for the Advection of Microphysical Variables in Cloud-Resolving Models

View More View Less
  • 1 The Hebrew University of Jerusalem, Jerusalem, Israel
© Get Permissions
Restricted access

Abstract

An efficient semi-Lagrangian (SL) numerical scheme for the advection of positive-definite microphysical variables in cloud-resolving models is proposed. The scheme is a linear combination of SL schemes of the first and second order. The proposed scheme is compared with two high-order, monotonic, nonlinear Eulerian schemes, in two 2D tests. In the first test, advection of a positive scalar field with large gradients is performed within complicated idealized steering flows. In the second test, a hail storm is simulated using the 2D Hebrew University Cloud Model, describing the interactions between 15 size distributions of different microphysical quantities (each distribution is described by 43 mass bins). The proposed scheme is computationally efficient, has a low numerical diffusion and a high level of mass conservation accuracy, and preserves the sum of multiple advected variables as well as the linear relationships between the advected scalar variables. Although the proposed SL scheme is not exactly positive definite, the negative values and their number, which may appear only in the case of very strong gradients, are negligible. The scheme produces results similar to those of nonlinear Eulerian advection schemes while reducing computation time by approximately a factor of 10.

Corresponding author: Alexander Khain, alexander.khain@mail.huji.ac.il

Abstract

An efficient semi-Lagrangian (SL) numerical scheme for the advection of positive-definite microphysical variables in cloud-resolving models is proposed. The scheme is a linear combination of SL schemes of the first and second order. The proposed scheme is compared with two high-order, monotonic, nonlinear Eulerian schemes, in two 2D tests. In the first test, advection of a positive scalar field with large gradients is performed within complicated idealized steering flows. In the second test, a hail storm is simulated using the 2D Hebrew University Cloud Model, describing the interactions between 15 size distributions of different microphysical quantities (each distribution is described by 43 mass bins). The proposed scheme is computationally efficient, has a low numerical diffusion and a high level of mass conservation accuracy, and preserves the sum of multiple advected variables as well as the linear relationships between the advected scalar variables. Although the proposed SL scheme is not exactly positive definite, the negative values and their number, which may appear only in the case of very strong gradients, are negligible. The scheme produces results similar to those of nonlinear Eulerian advection schemes while reducing computation time by approximately a factor of 10.

Corresponding author: Alexander Khain, alexander.khain@mail.huji.ac.il
Save