• Aitken, M. L., R. M. Banta, Y. L. Pichugina, and J. K. Lundquist, 2014: Quantifying wind turbine wake characteristics from scanning remote sensor data. J. Atmos. Oceanic Technol., 31, 765787, https://doi.org/10.1175/JTECH-D-13-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Wind Energy Association, 2008: Annual Wind Industry Report–Year Ending 2008. AWEA Doc., 68 pp., https://www.nrel.gov/docs/fy09osti/46026.pdf.

  • Ashley, W. S., A. M. Haberlie, and J. Strohm, 2019: A climatology of quasi-linear convective systems and their hazards in the United States. Wea. Forecasting, 34, 16051631, https://doi.org/10.1175/WAF-D-19-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. D. Olivier, and P. H. Gudiksen, 1993: Sampling requirements for drainage flows that transport atmospheric contaminants in complex terrain. Radiat. Protection Dosim., 50, 243248, https://doi.org/10.1093/oxfordjournals.rpd.a082094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, T. B., 1968: Gravity currents and related phenomena. J. Fluid Mech., 31, 209248, https://doi.org/10.1017/S0022112068000133.

  • Bianco, L., K. Friedrich, J. Wilczak, D. Hazen, D. Wolfe, R. Delgado, S. Oncley, and J. K. Lundquist, 2017: Assessing the accuracy of microwave radiometers and radio acoustic sounding systems for wind energy applications. Atmos. Meas. Tech., 10, 17071721, https://doi.org/10.5194/amt-10-1707-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bidokhti, A. A., and T. Bani-Hashem, 2001: Structure of thunderstorm gust fronts with topographic effects. Adv. Atmos. Sci., 18, 11611174, https://doi.org/10.1007/s00376-001-0030-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodini, N., J. K. Lundquist, and R. K. Newsom, 2018: Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign. Atmos. Meas. Tech., 11, 42914308, https://doi.org/10.5194/amt-11-4291-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, B. M., 1996: Example of reduced turbulence during thunderstorm outflow. J. Appl. Meteor., 35, 10281032, https://doi.org/10.1175/1520-0450(1996)035<1028:EORTDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2005: Spurious convective organization in simulated squall lines owing to moist absolutely unstable layers. Mon. Wea. Rev., 133, 19781997, https://doi.org/10.1175/MWR2952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2008: Gravity currents in a deep anelastic atmosphere. J. Atmos. Sci., 65, 536556, https://doi.org/10.1175/2007JAS2443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and M. D. Parker, 2010: Observations of a squall line and its near environment using high-frequency rawinsonde launches during VORTEX2. Mon. Wea. Rev., 138, 40764097, https://doi.org/10.1175/2010MWR3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. R. Hjelmfelt, and P. L. Smith, 2006: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673688, https://doi.org/10.1175/WAF949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, S. J., and C. R. Anderson, 1981: A report to the committee on appropriations, U.S. House of Representatives, on wildfire on Merritt Island. Surveys and Investigation Staff Rep., 34 pp., https://www.wildfirelessons.net/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=de70dc82-1760-487f-b1d4-05a8d11293cc&forceDialog=0.

  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140156, https://doi.org/10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chay, M. T., F. Albermani, and R. Wilson, 2006: Numerical and analytical simulation of downburst wind loads. Eng. Struct., 28, 240254, https://doi.org/10.1016/j.engstruct.2005.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clifton, A., 2014: 135-m meteorological masts at the National Wind Technology Center. NREL Rep., 52 pp., https://wind.nrel.gov/MetData/Publications/NWTC_135m_MetMasts.pdf.

  • Clifton, A., and J. K. Lundquist, 2012: Data clustering reveals climate impacts on local wind phenomena. J. Appl. Meteor. Climatol., 51, 15471557, https://doi.org/10.1175/JAMC-D-11-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clifton, A., S. Schreck, G. Scott, N. Kelley, and J. K. Lundquist, 2013: Turbine inflow characterization at the National Wind Technology Center. J. Sol. Energy Eng., 135, 031017, https://doi.org/10.1115/1.4024068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coen, J. L., and P. J. Riggan, 2011: A landscape-scale wildland fire study using coupled weather-wildland fire model and airborne remote sensing. Proc. Third Fire Behavior and Fuel Conf., Spokane, WA, International Association of Wildland Fire, 495505, http://www.iawfonline.org/wp-content/uploads/2018/02/2010_FBF_Conference_Proceedings.pdf.

    • Search Google Scholar
    • Export Citation
  • Coen, J. L., and W. Schroeder, 2017: Coupled weather-fire modeling: From research to operational forecasting. Fire Manage. Today, 75, 3945.

    • Search Google Scholar
    • Export Citation
  • Coen, J. L., M. Cameron, J. Michalakes, E. G. Patton, P. J. Riggan, and K. M. Yedinak, 2013: WRF-Fire: Coupled weather–wildland fire modeling with the weather research and forecasting model. J. Appl. Meteor. Climatol., 52, 1638, https://doi.org/10.1175/JAMC-D-12-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coen, J. L., E. N. Stavros, and J. A. Fites-Kaufman, 2018: Deconstructing the king megafire. Ecol. Appl., 28, 15651580, https://doi.org/10.1002/eap.1752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., R. L. George, P. J. Wetzel, and R. L. McAnelly, 1983: A long-lived mesoscale convective complex. Part I: The mountain-generated component. Mon. Wea. Rev., 111, 18931918, https://doi.org/10.1175/1520-0493(1983)111<1893:ALLMCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. Bryan, and S. C. Van den Heever, 2011: Storm and Cloud Dynamics. International Geophysics Series, Vol. 99, Academic Press, 820 pp.

    • Search Google Scholar
    • Export Citation
  • Courtney, M., R. Wagner, and P. Lindelow, 2008: Testing and comparison of lidars for profile and turbulence measurements in wind energy. IOP Conf. Ser.: Earth Environ. Sci., 1, 012021, https://doi.org/10.1088/1755-1315/1/1/012021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig Goff, R., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 14291440, https://doi.org/10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, https://doi.org/10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., D. J. Stensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849, https://doi.org/10.1175/2008MWR2528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Federal Aviation Administration, 1988: Pilot windshear guide. U.S. Department of Transportation Doc. AC 00-54, 64 pp., https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC00-54.pdf.

  • Federal Aviation Administration, 2008: Thunderstorms—Don’t flirt…skirt ‘em. U.S. Department of Transportation Doc. FAA-P-8740-12, 6 pp, https://www.faasafety.gov/files/gslac/library/documents/2011/Aug/56397/FAA%20P-8740-12%20Thunderstorms[hi-res]%20branded.pdf.

  • Federal Aviation Administration, 2013: Thunderstorms. U.S. Department of Transportation Doc. AC 00-24C, 13 pp., https://www.faa.gov/documentlibrary/media/advisory_circular/ac%2000-24c.pdf.

  • Friedrich, K., D. E. Kingsmill, and C. R. Young, 2005: Misocyclone characteristics along Florida gust fronts during CaPE. Mon. Wea. Rev., 133, 33453367, https://doi.org/10.1175/MWR3040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., J. K. Lundquist, M. Aitken, E. A. Kalina, and R. F. Marshall, 2012: Stability and turbulence in the atmospheric boundary layer: A comparison of remote sensing and tower observations. Geophys. Res. Lett., 39, L03801, https://doi.org/10.1029/2011GL050413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goens, D. W., and P. L. Andrews, 1998: Weather and fire behavior factors related to the 1990 Dude Fire near Payson, AZ. Second Conf. on Fire and Forest Meteorology, Phoenix, AZ, Amer. Meteor. Soc., 153158.

    • Search Google Scholar
    • Export Citation
  • Hadi, F. A., S. T. Nassir, and R. A. Abdulwahab, 2015: Turbulence intensity calculation for Al-Shehabi site in Iraq. Int. J. Adv. Res. Electr. Electron. Instrum. Eng., 4, 76197627.

    • Search Google Scholar
    • Export Citation
  • Haines, D. A., 1988: Downbursts and wildland fires: A dangerous combination. Fire Manage. Today, 49, 810.

  • Hanley, D. E., P. Cunningham, and S. L. Goodrick, 2013: Interaction between a wildfire and the sea-breeze front. Remote Sensing and Modeling Applications to Wildland Fires, Springer, 8198, https://doi.org/10.1007/978-3-642-32530-4_7.

    • Search Google Scholar
    • Export Citation
  • Hardy, K., and L. K. Comfort, 2015: Dynamic decision processes in complex, high-risk operations: The Yarnell Hill Fire, June 30, 2013. Saf. Sci., 71, 3947, https://doi.org/10.1016/j.ssci.2014.04.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., 1988: Structure and life cycle of microburst outflows observed in Colorado. J. Appl. Meteor., 27, 900927, https://doi.org/10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 570 pp.

  • International Electrotechnical Commission, 2005: Wind turbines—Part 1: Design requirements. IEC Rep. 61400-3: TC88-MT, 64 pp.

  • Jager, D., and A. Andreas, 1996: NREL National Wind Technology Center (NWTC): M2 Tower: Boulder, Colorado (Data). NREL, accessed 10 July 2019, https://doi.org/10.5439/1052222.

    • Crossref
    • Export Citation
  • Jiménez, P., D. Muñoz-Esparza, and B. Kosović, 2018: A high resolution coupled fire–atmosphere forecasting system to minimize the impacts of wildland fires: Applications to the Chimney Tops II wildland event. Atmosphere, 9, 197, https://doi.org/10.3390/atmos9050197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., R. S. Schumacher, J. H. Ruppert, D. T. Lindsey, J. E. Ruthford, and L. Kriederman, 2014: The role of convective outflow in the Waldo canyon fire. Mon. Wea. Rev., 142, 30613080, https://doi.org/10.1175/MWR-D-13-00361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, W., and N. Kelley, 2000: Design specifications for the development of the initial validation software (version 3.0) for processing of NWTC 80-Meter Meteorological Tower Data. NREL Rep. TP-500-27104, 92 pp., https://doi.org/10.2172/752652.

    • Crossref
    • Export Citation
  • Joint Fire Science Program, 2017: Validating mesoscale, atmospheric boundary prediction models and tools. JFSP Project Announcement FA-FON0017-0001, 13 pp., https://www.firescience.gov/AFPs/17-1-05/17-1-05_FON_Announcement.pdf.

  • Jorgensen, D. P., Z. Pu, P. O. Persson, and W. Tao, 2003: Variations associated with cores and gaps of a Pacific narrow cold frontal rainband. Mon. Wea. Rev., 131, 27052729, https://doi.org/10.1175/1520-0493(2003)131<2705:VAWCAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. E. Gaynor, 1983: The Boulder Atmospheric Observatory. J. Climate Appl. Meteor., 22, 863880, https://doi.org/10.1175/1520-0450(1983)022<0863:TBAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karels, J., and M. Dudley, 2013: Yarnell Hill Fire Serious Accident Investigation Report. Arizona State Forestry Division Rep., 116 pp., https://docs.google.com/file/d/0B36DIycSgbzWSUtjNkl1Z2ROT0k/edit.

  • Keighton, S., J. Jackson, J. Guyer, and J. Peters, 2007: A preliminary analysis of severe quasi-linear mesoscale convective systems crossing the Appalachians. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., P2.18, http://ams.confex.com/ams/pdfpapers/123614.pdf.

    • Search Google Scholar
    • Export Citation
  • Kern, J., W. Jones, J. Murrian, and J. DiMaggio, 2004: Review of burnover incident at St. Sebastian River Preserve State Park, Indian River County, Florida, 24 February 2004. Florida Department of Environmental Protection Doc., 25 pp., http://www.wildfirelessons.net/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=83ebf8a1-1d12-001c-32b5-d279c795fa6b&forceDialog=1.

  • Kishcha, P., and Coauthors, 2016: Modelling of a strong dust event in the complex terrain of the Dead Sea valley during the passage of a gust front. Tellus, 68B, 29751, https://doi.org/10.3402/tellusb.v68.29751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and C. A. Ray, 1997: Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Wea. Forecasting, 12, 5677, https://doi.org/10.1175/1520-0434(1997)012<0056:MOSCZI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumer, V. M., J. Reuder, M. Dorninger, R. Zauner, and V. Grubišić, 2016: Turbulent kinetic energy estimates from profiling wind lidar measurements and their potential for wind energy applications. Renewable Energy, 99, 898910, https://doi.org/10.1016/j.renene.2016.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, D. K., and A. Kareem, 2009: Gust-front factor: New framework for wind load effects on structures. J. Struct. Eng., 135, 717732, https://doi.org/10.1061/(ASCE)0733-9445(2009)135:6(717).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, D. K., A. Kareem, and K. Butler, 2012: Gust-front loading effects on wind turbine tower systems. J. Wind Eng. Ind. Aerodyn., 104–106, 109115, https://doi.org/10.1016/j.jweia.2012.03.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letchford, C. W., C. Mans, and M. T. Chay, 2002: Thunderstorms—Their importance in wind engineering (a case for the next generation wind tunnel). J. Wind Eng. Ind. Aerodyn., 90, 14151433, https://doi.org/10.1016/S0167-6105(02)00262-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, F. T., D. A. Smith, J. L. Schroeder, and K. C. Mehta, 2014: Thunderstorm characteristics of importance to wind engineering. J. Wind Eng. Ind. Aerodyn., 125, 121132, https://doi.org/10.1016/j.jweia.2013.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, F. T., M. S. Mason, and A. Z. de Alba, 2018: Investigation of a downburst loading event on a full-scale low-rise building. J. Wind Eng. Ind. Aerodyn., 182, 272285, https://doi.org/10.1016/j.jweia.2018.09.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lompar, M., M. Ćurić, and D. Romanic, 2018: Implementation of a gust front head collapse scheme in the WRF numerical model. Atmos. Res., 203, 231245, https://doi.org/10.1016/j.atmosres.2017.12.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, N. Y., P. Hawbecker, S. Basu, and L. Manuel, 2019: On wind turbine loads during thunderstorm downbursts in contrasting atmospheric stability regimes. Energies, 12, 2773, https://doi.org/10.3390/en12142773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. K., M. J. Churchfield, S. Lee, and A. Clifton, 2015: Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics. Atmos. Meas. Tech., 8, 907920, https://doi.org/10.5194/amt-8-907-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. K., and Coauthors, 2017: Assessing state-of-the-art capabilities for probing the atmospheric boundary layer: The XPIA field campaign. Bull. Amer. Meteor. Soc., 98, 289314, https://doi.org/10.1175/BAMS-D-15-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., 1988: Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Mon. Wea. Rev., 116, 14741492, https://doi.org/10.1175/1520-0493(1988)116<1474:GFCATK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manwell, J. F., J. G. McGowan, and A. L. Rogers, 2002: Aerodynamics of wind turbines. Wind Energy Explained: Theory, Design and Application, John Wiley and Sons, 91–156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martner, B. E., 1997: Vertical velocities in a thunderstorm gust front and outflow. J. Appl. Meteor., 36, 615622, https://doi.org/10.1175/1520-0450(1997)036<0615:VVIATG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., and W. R. Cotton, 1986: Meso-β-scale characteristics of an episode of meso-α-scale convective complexes. Mon. Wea. Rev., 114, 17401770, https://doi.org/10.1175/1520-0493(1986)114<1740:MSCOAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaffrey, K., and Coauthors, 2017: Identification of tower-wake distortions using sonic anemometer and lidar measurements. Atmos. Meas. Tech., 10, 393407, https://doi.org/10.5194/amt-10-393-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moller, A. R., C. A. Doswell, M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347, https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, P. A. Jiménez, and J. L. Coen, 2018: An accurate fire-spread algorithm in the Weather Research and Forecasting Model using the level-set method. J. Adv. Model. Earth Syst., 10, 908926, https://doi.org/10.1002/2017MS001108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H. H., L. Manuel, and P. S. Veers, 2011: Wind turbine loads during simulated thunderstorm microbursts. J. Renewable Sustain. Energy, 3, 053104, https://doi.org/10.1063/1.3646764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, A., and D. Kearney, 2019: Low level turbulence detection for airports. Int. J. Aviat. Aeronaut. Aerosp., 6, https://doi.org/10.15394/ijaaa.2019.1302.

    • Search Google Scholar
    • Export Citation
  • Paez, G., M. Strojnik, and M. K. Scholl, 2015: Analysis of propagation of complex fire: Case of the Yarnell Hill Fire 1. Proc. SPIE, 9608, 96081L, https://doi.org/10.1117/12.2191725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and D. A. Ahijevych, 2007: Convective episodes in the east-central United States. Mon. Wea. Rev., 135, 37073727, https://doi.org/10.1175/2007MWR2098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Provod, M., J. H. Marsham, D. J. Parker, and C. E. Birch, 2016: A characterization of cold pools in the West African Sahel. Mon. Wea. Rev., 144, 19231934, https://doi.org/10.1175/MWR-D-15-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and S. L. Nesbitt, 2018: Radar Meteorology: A First Course. John Wiley and Sons, 488 pp.

  • Rhodes, M. E., and J. K. Lundquist, 2013: The effect of wind-turbine wakes on summertime US Midwest atmospheric wind profiles as observed with ground-based Doppler lidar. Bound.-Layer Meteor., 149, 85103, https://doi.org/10.1007/s10546-013-9834-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci., 33, 919928, https://doi.org/10.1029/98RS01182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roux, F., 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406426, https://doi.org/10.1175/1520-0469(1988)045<0406:TWASLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. K., and T. L. Baxter, 1986: The gust front. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., University of Oklahoma Press, 187–196.

    • Search Google Scholar
    • Export Citation
  • Sathe, A., J. Mann, J. Gottschall, and M. S. Courtney, 2011: Can wind lidars measure turbulence? J. Atmos. Oceanic Technol., 28, 853868, https://doi.org/10.1175/JTECH-D-10-05004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. G., 2009: The impact of terrain on three cases of tornadogenesis in the Great Tennessee Valley. Electron. J. Oper. Meteor., 10, 2009-EJ11, http://nwafiles.nwas.org/ej/pdf/2009-EJ11.pdf.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, https://doi.org/10.1175/WAF900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharples, J. J., R. H. D. McRae, C. Simpson, P. Fox-Hughes, and C. Clements, 2017: Terrain-controlled airflows. Fire Manage. Today, 75, 2024.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1969: A comparison between laboratory and atmospheric density currents. Quart. J. Roy. Meteor. Soc., 95, 758765, https://doi.org/10.1002/qj.49709540609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., and R. E. Britter, 1980: A laboratory model of an atmospheric mesofront. Quart. J. Roy. Meteor. Soc., 106, 485500, https://doi.org/10.1002/qj.49710644907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solari, G., 2014: Emerging issues and new frameworks for wind loading on structures in mixed climates. Wind Struct., 19, 295320, https://doi.org/10.12989/was.2014.19.3.295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solari, G., M. Burlando, P. De Gaetano, and M. P. Repetto, 2015: Characteristics of thunderstorms relevant to the wind loading of structures. Wind Struct., 20, 763791, https://doi.org/10.12989/was.2015.20.6.763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solheim, F., J. Godwin, and R. Ware, 1998a: Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer. Meteor. Z., 7, 370376, https://doi.org/10.1127/metz/7/1998/370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solheim, F., J. Godwin, E. R. Westwater, Y. Han, S. J. Keihm, K. Marsh, and R. Ware, 1998b: Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods. Radio Sci., 33, 393404, https://doi.org/10.1029/97RS03656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Tucker, D. F., and N. A. Crook, 1999: The generation of a mesoscale convective system from mountain convection. Mon. Wea. Rev., 127, 12591273, https://doi.org/10.1175/1520-0493(1999)127<1259:TGOAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 331358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilbanks, M. C., S. E. Yuter, S. P. de Szoeke, W. A. Brewer, M. A. Miller, A. M. Hall, and C. D. Burleyson, 2015: Near-surface density currents observed in the southeast Pacific stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 143, 35323555, https://doi.org/10.1175/MWR-D-14-00359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, D. E., and R. J. Lataitis, 2018: Boulder Atmospheric Observatory: 1977–2016: The end of an era and lessons learned. Bull. Amer. Meteor. Soc., 99, 13451358, https://doi.org/10.1175/BAMS-D-17-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., G. Solari, P. De Gaetano, M. Burlando, and M. P. Repetto, 2018: A refined analysis of thunderstorm outflow characteristics relevant to the wind loading of structures. Probab. Eng. Mech., 54, 924, https://doi.org/10.1016/j.probengmech.2017.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 35 35 17
Full Text Views 9 9 8
PDF Downloads 17 17 15

Characterizing Thunderstorm Gust Fronts near Complex Terrain

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • 2 Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
  • 3 Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, and National Renewable Energy Laboratory, Golden, Colorado
© Get Permissions
Restricted access

ABSTRACT

Fire safety, aviation, wind energy, and structural-engineering operations are impacted by thunderstorm outflow boundaries or gust fronts (GFs) particularly when they occur in mountainous terrain. For example, during the 2013 Arizona Yarnell Hill Fire, 19 firefighters were killed as a result of sudden changes in fire behavior triggered by a passing GF. Knowledge of GF behavior in complex terrain also determines departure and landing operations at nearby airports, and GFs can induce exceptional structural loads on wind turbines. While most examinations of GF characteristics focus on well-organized convection in areas such as the Great Plains, here the investigation is broadened to explore GF characteristics that evolve near the complex terrain of the Colorado Rocky Mountains. Using in situ observations from meteorological towers, as well as data from wind-profiling lidars and a microwave radiometer, 24 GF events are assessed to quantify changes in wind, temperature, humidity, and turbulence in the lowest 300 m AGL as these GFs passed over the instruments. The changes in magnitude for all variables are on average weaker in the Colorado Front Range than those typically observed from organized, severe storms in flatter regions. Most events from this study experience an increase in wind speed from 1 to 8 m s−1, relative humidity from 1% to 8%, and weak vertical motion from 0.3 to 3.6 m s−1 during GF passage while temperature drops by 0.2°–3°C and turbulent kinetic energy peaks at >4 m2 s−2. Vertical profiles reveal that these changes vary little with height in the lowest 300 m.

Corresponding author: Nicholas Luchetti, nicholas.luchetti@colorado.edu

ABSTRACT

Fire safety, aviation, wind energy, and structural-engineering operations are impacted by thunderstorm outflow boundaries or gust fronts (GFs) particularly when they occur in mountainous terrain. For example, during the 2013 Arizona Yarnell Hill Fire, 19 firefighters were killed as a result of sudden changes in fire behavior triggered by a passing GF. Knowledge of GF behavior in complex terrain also determines departure and landing operations at nearby airports, and GFs can induce exceptional structural loads on wind turbines. While most examinations of GF characteristics focus on well-organized convection in areas such as the Great Plains, here the investigation is broadened to explore GF characteristics that evolve near the complex terrain of the Colorado Rocky Mountains. Using in situ observations from meteorological towers, as well as data from wind-profiling lidars and a microwave radiometer, 24 GF events are assessed to quantify changes in wind, temperature, humidity, and turbulence in the lowest 300 m AGL as these GFs passed over the instruments. The changes in magnitude for all variables are on average weaker in the Colorado Front Range than those typically observed from organized, severe storms in flatter regions. Most events from this study experience an increase in wind speed from 1 to 8 m s−1, relative humidity from 1% to 8%, and weak vertical motion from 0.3 to 3.6 m s−1 during GF passage while temperature drops by 0.2°–3°C and turbulent kinetic energy peaks at >4 m2 s−2. Vertical profiles reveal that these changes vary little with height in the lowest 300 m.

Corresponding author: Nicholas Luchetti, nicholas.luchetti@colorado.edu
Save