• Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemispheric variations. J. Atmos. Sci., 56, 17291747, https://doi.org/10.1175/1520-0469(1999)056<1729:COWPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 9991015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and D. B. Yu, 1999: Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter. J. Atmos. Sci., 56, 17081728, https://doi.org/10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimri, A. P., D. Niyogi, A. P. Barros, J. Ridley, U. C. Mohanty, T. Yasunari, and D. R. Sikka, 2015: Western disturbances: A review. Rev. Geophys., 53, 225246, https://doi.org/10.1002/2014rg000460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doraiswamy, H., V. Natarajan, and R. S. Nanjundiah, 2013: An exploration framework to identify and track movement of cloud systems. IEEE Trans. Vis. Comput. Graph., 19, 28962905, https://doi.org/10.1109/TVCG.2013.131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, R. J. H., K. M. Willett, D. E. Parker, and L. Mitchell, 2016: Expanding HadISD: Quality-controlled, sub-daily station data from 1931. Geosci. Instrum. Methods Data Syst., 5, 473491, https://doi.org/10.5194/gi-5-473-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fragkoulidis, G., V. Wirth, P. Bossmann, and A. H. Fink, 2018: Linking Northern Hemisphere temperature extremes to Rossby wave packets. Quart. J. Roy. Meteor. Soc., 144, 553566, https://doi.org/10.1002/qj.3228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, B. J., and D. Dueck, 2007: Clustering by passing messages between data points. Science, 315, 972976, https://doi.org/10.1126/science.1136800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghinassi, P., G. Fragkoulidis, and V. Wirth, 2018: Local finite-amplitude wave activity as a diagnostic for Rossby wave packets. Mon. Wea. Rev., 146, 40994114, https://doi.org/10.1175/MWR-D-18-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagberg, A. A., D. A. Schult, and P. J. Swart, 2008: Exploring network structure, dynamics, and function using networkx. Proc. Seventh Python in Science Conf., Pasadena, CA, Enthought, scipy.org, 11–15.

  • Hakim, G. J., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 28242837, https://doi.org/10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heine, C., H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani, G. Scheuermann, H. Hagen, and C. Garth, 2016: A survey of topology-based methods in visualization. Comput. Graph. Forum, 35, 643667, https://doi.org/10.1111/cgf.12933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hovmöller, E., 1949: The trough-and-ridge diagram. Tellus, 1, 6266, https://doi.org/10.3402/tellusa.v1i2.8498.

  • Hunt, K. M. R., A. G. Turner, and L. C. Shaffrey, 2018: The evolution, seasonality and impacts of western disturbances. Quart. J. Roy. Meteor. Soc., 144, 278290, https://doi.org/10.1002/qj.3200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, E.-S., J. S. Pal, and E. A. B. Eltahir, 2017: Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv., 3, e1603322, https://doi.org/10.1126/sciadv.1603322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and I. M. Held, 1993: Baroclinic wave packets in models and observations. J. Atmos. Sci., 50, 14131428, https://doi.org/10.1175/1520-0469(1993)050<1413:BWPIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2010: Tropopause-level waveguides. J. Atmos. Sci., 67, 866879, https://doi.org/10.1175/2009JAS2995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteiro, J. M., and R. Caballero, 2019: Characterization of extreme wet-bulb temperature events in southern Pakistan. Geophys. Res. Lett., 46, 10 65910 668, https://doi.org/10.1029/2019GL084711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, T. J., G. J. Berry, M. J. Reeder, and N. Nicholls, 2014: Modes of climate variability and heat waves in Victoria, southeastern Australia. Geophys. Res. Lett., 41, 69266934, https://doi.org/10.1002/2014GL061736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., S. K. Behera, S. B. Ratna, M. Rajeevan, and T. Yamagata, 2016: Anatomy of Indian heatwaves. Sci. Rep., 6, 24395, https://doi.org/10.1038/srep24395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and H. Płotka, 2015: Physics of changes in synoptic midlatitude temperature variability. J. Climate, 28, 23122331, https://doi.org/10.1175/JCLI-D-14-00632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1979: The downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36, 12391254, https://doi.org/10.1175/1520-0469(1979)036<1239:TDAUDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souders, M. B., B. A. Colle, and E. K. M. Chang, 2014a: The climatology and characteristics of Rossby wave packets using a feature-based tracking technique. Mon. Wea. Rev., 142, 35283548, https://doi.org/10.1175/MWR-D-13-00371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souders, M. B., B. A. Colle, and E. K. M. Chang, 2014b: A description and evaluation of an automated approach for feature-based tracking of Rossby wave packets. Mon. Wea. Rev., 142, 35053527, https://doi.org/10.1175/MWR-D-13-00317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., and R. T. Pierrehumbert, 1997: Lower-tropospheric heat transport in the Pacific storm track. J. Atmos. Sci., 54, 15331543, https://doi.org/10.1175/1520-0469(1997)054<1533:LTHTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valsangkar, A. A., J. M. Monteiro, V. Narayanan, I. Hotz, and V. Natarajan, 2019: An exploratory framework for cyclone identification and tracking. IEEE Trans. Vis. Comput. Graph., 25, 14601473, https://doi.org/10.1109/TVCG.2018.2810068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., G.-H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45, 439462, https://doi.org/10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Widanagamaachchi, W., A. Jacques, B. Wang, E. Crosman, P.-T. Bremer, V. Pascucci, and J. Horel, 2017: Exploring the evolution of pressure-perturbations to understand atmospheric phenomena. 2017 IEEE Pacific Visualization Symp. (PacificVis), Seoul, South Korea, IEEE, 101–110, https://doi.org/10.1109/PACIFICVIS.2017.8031584.

    • Crossref
    • Export Citation
  • Wirth, V., M. Riemer, E. K. M. Chang, and O. Martius, 2018: Rossby wave packets on the midlatitude waveguide—A review. Mon. Wea. Rev., 146, 19652001, https://doi.org/10.1175/mwr-d-16-0483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zimin, A. V., I. Szunyogh, D. J. Patil, B. R. Hunt, and E. Ott, 2003: Extracting envelopes of Rossby wave packets. Mon. Wea. Rev., 131, 10111017, https://doi.org/10.1175/1520-0493(2003)131<1011:EEORWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zimin, A. V., I. Szunyogh, B. R. Hunt, and E. Ott, 2006: Extracting envelopes of nonzonally propagating Rossby wave packets. Mon. Wea. Rev., 134, 13291333, https://doi.org/10.1175/MWR3122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 37 37 13
Full Text Views 4 4 3
PDF Downloads 8 8 6

An Integrated Geometric and Topological Approach for the Identification and Visual Analysis of Rossby Wave Packets

View More View Less
  • 1 Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
  • 2 Department of Earth and Climate Science, Indian Institute of Science Education and Research, Pune, India
  • 3 Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
© Get Permissions
Restricted access

Abstract

A new method for identifying Rossby wave packets (RWPs) using 6-hourly data from the ERA-Interim is presented. The method operates entirely in the spatial domain and relies on the geometric and topological properties of the meridional wind field to identify RWPs. The method represents RWPs as nodes and edges of a dual graph instead of the more common envelope representation. This novel representation allows access to both RWP phase and amplitude information. Local maxima and minima of the meridional wind field are collected into groups. Each group, called a υ-max cluster or υ-min cluster of the meridional wind field, represents a potential wave component. Nodes of the dual graph represent a υ-max cluster or υ-min cluster. Alternating υ-max clusters and υ-min clusters are linked by edges of the dual graph, called the RWP association graph. Amplitude and discrete gradient-based filtering applied on the association graph helps identify RWPs of interest. The method is inherently robust against noise and does not require smoothing of the input data. The main parameters that control the performance of the method and their impact on the identified RWPs are discussed. All filtering and RWP identification operations are performed on the association graph as opposed to directly on the wind field, leading to computational efficiency. Advantages and limitations of the method are discussed and are compared against (transform-based) envelope methods in a series of experiments.

Corresponding author: Karran Pandey, karran13@gmail.com

Abstract

A new method for identifying Rossby wave packets (RWPs) using 6-hourly data from the ERA-Interim is presented. The method operates entirely in the spatial domain and relies on the geometric and topological properties of the meridional wind field to identify RWPs. The method represents RWPs as nodes and edges of a dual graph instead of the more common envelope representation. This novel representation allows access to both RWP phase and amplitude information. Local maxima and minima of the meridional wind field are collected into groups. Each group, called a υ-max cluster or υ-min cluster of the meridional wind field, represents a potential wave component. Nodes of the dual graph represent a υ-max cluster or υ-min cluster. Alternating υ-max clusters and υ-min clusters are linked by edges of the dual graph, called the RWP association graph. Amplitude and discrete gradient-based filtering applied on the association graph helps identify RWPs of interest. The method is inherently robust against noise and does not require smoothing of the input data. The main parameters that control the performance of the method and their impact on the identified RWPs are discussed. All filtering and RWP identification operations are performed on the association graph as opposed to directly on the wind field, leading to computational efficiency. Advantages and limitations of the method are discussed and are compared against (transform-based) envelope methods in a series of experiments.

Corresponding author: Karran Pandey, karran13@gmail.com
Save