Abstract
The results of a numerical time integration of a hemispheric general circulation model of the atmosphere with moist processes and a uniform earth's surface has already been published by Manabe, Smagorinsky, and Strickler. In this study, the integration is repeated after halving the midlatitude grid size from approximately 500 to 250 km.
This increase in the resolution of the horizontal finite differences markedly improves the features of the model atmosphere. For example, the system of fronts and the associated cyclone families in the high resolution atmosphere is much more realistic than that in the low resolution atmosphere. Furthermore, the general magnitude and the spectral distribution of eddy kinetic energy are in better agreement with the actual atmosphere as a result of the improvement in resolution.
In order to explain these improvements, an extensive analysis of the energetics of both the low and high resolution atmospheric models is carried out. It is shown that these improvements are due not only to the increase of the accuracy of the finite differences but also to the shift in the scale of dissipation by the nonlinear lateral viscosity toward a smaller scale resulting from the decrease in grid size. In the low resolution atmospheric model, the transfer of energy from eddy to zonal kinetic energy is missing because of excessive subgrid scale dissipation at medium wave numbers, whereas it has significant magnitude in the high resolution atmospheric model. It is speculated that further increase of resolution should improve the results because it tends to separate the characteristic scale of dissipation from that of the source of eddy kinetic energy.
The analysis of the energetics in wave number space clearly demonstrates the differences between the energetics of the different parts of the atmosphere. In middle latitudes there are essential differences between the energetics of the model troposphere and that of the model stratosphere. In the model troposphere, the eddy kinetic energy is produced by the conversion of eddy potential energy in the range of wave numbers from 2 to 8. Part of the energy thus produced is dissipated by the subgrid scale dissipation, and most of the remainder is decascaded to zonal kinetic energy. In the model stratosphere, where very long waves predominate, the eddy kinetic energy is generated in the range of wave numbers from 2 to 3 by the energy supplied from the troposphere. Most of this energy is then decascaded barotropically to zonal kinetic energy.
In the Tropics, eddy kinetic energy is mainly produced by the release of eddy available potential energy generated by the heat of condensation. Although the rate of conversion is maximum at very low wave numbers, the conversion spectrum extends to very high wave numbers.
A box diagram of the energetics of the high resolution moist model shows that the eddy available potential energy is generated by the heat of condensation as well as by energy transfer from the zonal available potential energy. Furthermore, it is noteworthy that the zonal kinetic energy is maintained not only by the barotropic exchange from the eddy kinetic energy but also from the conversions of zonal potential energy. The intensification of the direct tropical cell and the weakening of the indirect Ferrel cell in middle latitudes caused by the moist processes are responsible for this positive zonal conversion.
One of the highlights of the results from the integration of the high resolution moist model is the successful simulation of the evolution of fronts and the associated cyclone families. The influence of moist processes upon frontal structure as well as other synoptic features is investigated by comparing the moist model atmosphere with the dry model atmosphere without the effect of the selective heating of condensation. It is found that the heat of condensation significantly reduces the width of fronts and the characteristic scale of cyclones in the lower troposphere.