ON THE RELATIONSHIP BETWEEN GEOSTROPHIC AND SURFACE WIND AT SEA

View More View Less
  • 1 Department of Oceanography, Oregon State University, Corvallis, Oreg.
  • | 2 Meteorologisches Institut der Universität Hamburg, Germany
© Get Permissions
Full access

Abstract

The ratio between observed surface and geostrophic wind speed has been investigated from observations at the German Bight, taking geostrophic wind and the air-sea temperature difference as parameters. The ratio decreases with increasing geostrophic wind and increasing stability. While stability is an important parameter for light to moderate winds, variation of the ratio with geostrophic wind speed cannot be neglected, taking the full range of geostrophic wind speeds into consideration. From the Navier-Stokes equations, such a variation is to be expected. For light winds, the (local) surface wind may exceed the (mesoscale) geostrophic wind. Both effects together can be described approximately by a linear relation between the surface wind and geostrophic wind, with a slope of 0.56 and a constant term b>0 varying with stability. The residual error was 2 m/s. Variation with latitude is inferred from the Navier-Stokes equations.

On leave from Meteorologisches Institut der Universität Hamburg

Abstract

The ratio between observed surface and geostrophic wind speed has been investigated from observations at the German Bight, taking geostrophic wind and the air-sea temperature difference as parameters. The ratio decreases with increasing geostrophic wind and increasing stability. While stability is an important parameter for light to moderate winds, variation of the ratio with geostrophic wind speed cannot be neglected, taking the full range of geostrophic wind speeds into consideration. From the Navier-Stokes equations, such a variation is to be expected. For light winds, the (local) surface wind may exceed the (mesoscale) geostrophic wind. Both effects together can be described approximately by a linear relation between the surface wind and geostrophic wind, with a slope of 0.56 and a constant term b>0 varying with stability. The residual error was 2 m/s. Variation with latitude is inferred from the Navier-Stokes equations.

On leave from Meteorologisches Institut der Universität Hamburg

Save