• Brand, S., and J. W. Blelloch, 1973: Changes in the characteristics of typhoons crossing the Philippines. J. Appl. Meteor., 12, 104109, https://doi.org/10.1175/1520-0450(1973)012<0104:CITCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, Y. Wang, and C.-H. Chih, 2011: Eyewall evolution of typhoons crossing the Philippines and Taiwan: An observational study. Terr. Atmos. Oceanic Sci., 22, 535548, https://doi.org/10.3319/TAO.2011.05.10.01(TM).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., and R. A. Houze Jr., 2011: Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 16201636, https://doi.org/10.1175/2011JAS3715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., P. D. Reasor, R. F. Rogers, and W.-C. Lee, 2018: Dynamics of the transition from spiral rainbands to a secondary eyewall in Hurricane Earl (2010). J. Atmos. Sci., 75, 29092929, https://doi.org/10.1175/JAS-D-17-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., 1983: Hurricane Allen and island obstacles. J. Atmos. Sci., 40, 13601361, https://doi.org/10.1175/1520-0469(1983)040<1360:HAAIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., and W. H. Schubert, 2010: Adiabatic rearrangement of hollow PV towers. J. Adv. Model. Earth Syst., 2, 8, https://doi.org/10.3894/JAMES.2010.2.8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, R. K. Taft, H. Wang, and J. P. Kossin, 2009: The life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705722, https://doi.org/10.1175/2008JAS2820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall cycle. Science, 315, 12351239, https://doi.org/10.1126/science.1135650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 10061022, https://doi.org/10.1175/JAS-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 17081727, https://doi.org/10.1175/2011MWR3560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674, https://doi.org/10.1175/JAS-D-11-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., J. P. Kossin, and M. DeMaria, 2003: Annular hurricanes. Wea. Forecasting, 18, 204223, https://doi.org/10.1175/1520-0434(2003)018<0204:AH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, https://doi.org/10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, https://doi.org/10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, https://doi.org/10.1175/2008MWR2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., C.-P. Chang, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 37583770, https://doi.org/10.1175/2009MWR2850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y.-L., Y. Wang, and Y.-L. Lin, 2020: How much does the upward advection of supergradient component of boundary layer wind contribute to tropical cyclone intensification and maximum intensity? J. Atmos. Sci., 77, 26492664, https://doi.org/10.1175/JAS-D-19-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., and K.-H. Chou, 2018: Characteristics of size change of tropical cyclones traversing the Philippines. Mon. Wea. Rev., 146, 28912911, htps://doi.org/10.1175/MWR-D-18-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., D. B. Ensley, S. Chiao, and C.-Y. Huang, 2002: Orographic influences on rainfall and track deflection associated with the passage of a tropical cyclone. Mon. Wea. Rev., 130, 29292950, https://doi.org/10.1175/1520-0493(2002)130<2929:OIORAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., N. C. Witcraft, and Y.-H. Kuo, 2006: Dynamics of track deflection associated with the passage of tropical cyclones over a mesoscale mountain. Mon. Wea. Rev., 134, 35093538, https://doi.org/10.1175/MWR3263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., M. DeMaria, and T. H. V. Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898, https://doi.org/10.1175/2008MWR2268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. J. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133147, https://doi.org/10.1175/2008JAS2717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, https://doi.org/10.1175/MWR-D-11-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C. and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Tang, C. K., and J. C. L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 15781589, https://doi.org/10.1002/qj.2240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, C. K., and J. C. L. Chan, 2016: Idealized simulations of the effect of Taiwan topography on the tracks of tropical cyclones with different steering flow strengths. Quart. J. Roy. Meteor. Soc., 142, 32113221, https://doi.org/10.1002/qj.2902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, https://doi.org/10.1175/MWR-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Wang, and H.-M. Xu, 2013: Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: A case study of Typhoon Megi (2010). Acta Meteor. Sin., 27, 455475, https://doi.org/10.1007/s13351-013-0418-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., C. Wu, and Y. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. J. Atmos. Sci., 73, 39113930, https://doi.org/10.1175/JAS-D-15-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Wang, J. Xu, and Y.-H. Duan, 2019: The axisymmetric and asymmetric aspects of the secondary eyewall formation in a numerically simulated tropical cyclone under idealized conditions on an f plane. J. Atmos. Sci., 76, 357378, https://doi.org/10.1175/JAS-D-18-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 12131238, https://doi.org/10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262, https://doi.org/10.1175/1520-0469(2002)059<1239:VRWIAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2012: Recent research progress on tropical cyclone structure and intensity. Trop. Cyclone Res. Rev., 1, 254275, https://doi.org/10.6057/2012TCRR02.05.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, https://doi.org/10.1007/s00703-003-0055-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, C. C., 2014: Surface wind nowcasting in the Penghu Islands based on classified typhoon tracks and the effects of the central mountain range of Taiwan. Wea. Forecasting, 29, 14251450, https://doi.org/10.1175/WAF-D-14-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of disaster. Bull. Amer. Meteor. Soc., 77, 543549, https://doi.org/10.1175/1520-0477(1996)077<0543:HAIFDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maximum, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., 2013: Typhoon Morakot: Key findings from the journal TAO for improving prediction of extreme rains at landfall. Bull. Amer. Meteor. Soc., 94, 155160, https://doi.org/10.1175/BAMS-D-11-00155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 6780, https://doi.org/10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., K.-H. Chou, H.-J. Cheng, and Y. Wang, 2003: Eyewall contraction, breakdown and reformation in a landfalling typhoon. Geophys. Res. Lett., 30, 1887, https://doi.org/10.1029/2003GL017653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., H.-J. Cheng, Y. Wang, and K.-H. Chou, 2009: A numerical investigation of the eyewall evolution of a landfalling typhoon. Mon. Wea. Rev., 137, 2140, https://doi.org/10.1175/2008MWR2516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Wang, and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 11651188, https://doi.org/10.1175/JAS3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, M.-J., D.-L. Zhang, and H.-L. Huang, 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci., 65, 30953115, https://doi.org/10.1175/2008JAS2453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 80 80 40
Full Text Views 32 32 21
PDF Downloads 43 43 30

A Numerical Study of Typhoon Megi (2010). Part II: Eyewall Evolution Crossing the Luzon Island

View More View Less
  • 1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • 2 International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 3 Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

Typhoon Megi (2010) experienced drastic eyewall structure changes when it crossed the Luzon Island and entered the South China Sea (SCS), including the contraction and breakdown of the eyewall after landfall over the Luzon Island, the formation of a new large outer eyewall accompanied by reintensification of the storm after it entered the SCS, and the appearance of a short-lived small inner eyewall. These features were reproduced reasonably well in a control simulation using the Advanced Weather Research and Forecasting (ARW-WRF) Model. In this study, the eyewall processes of the simulated Megi during and after landfall have been analyzed. Results show that the presence of the landmass of the Luzon Island increased surface friction and reduced surface enthalpy flux, causing the original eyewall to contract and break down and the storm to weaken. The formation of the new large eyewall results mainly from the axisymmetrization of outer spiral rainbands after the storm core moved across the Luzon Island and entered the SCS. The appearance of the small inner eyewall over the SCS was due to the increased surface enthalpy flux and the revival of convection in the central region of the storm core. In a sensitivity experiment with the mesoscale mountain replaced by flat surface over the Luzon Island, a new large outer eyewall formed over the western Luzon Island with its size about one-third smaller after the storm entered the SCS than that in the control experiment with the terrain over the Luzon Island unchanged.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuqing Wang, yuqing@hawaii.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-13-00070.1

Abstract

Typhoon Megi (2010) experienced drastic eyewall structure changes when it crossed the Luzon Island and entered the South China Sea (SCS), including the contraction and breakdown of the eyewall after landfall over the Luzon Island, the formation of a new large outer eyewall accompanied by reintensification of the storm after it entered the SCS, and the appearance of a short-lived small inner eyewall. These features were reproduced reasonably well in a control simulation using the Advanced Weather Research and Forecasting (ARW-WRF) Model. In this study, the eyewall processes of the simulated Megi during and after landfall have been analyzed. Results show that the presence of the landmass of the Luzon Island increased surface friction and reduced surface enthalpy flux, causing the original eyewall to contract and break down and the storm to weaken. The formation of the new large eyewall results mainly from the axisymmetrization of outer spiral rainbands after the storm core moved across the Luzon Island and entered the SCS. The appearance of the small inner eyewall over the SCS was due to the increased surface enthalpy flux and the revival of convection in the central region of the storm core. In a sensitivity experiment with the mesoscale mountain replaced by flat surface over the Luzon Island, a new large outer eyewall formed over the western Luzon Island with its size about one-third smaller after the storm entered the SCS than that in the control experiment with the terrain over the Luzon Island unchanged.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuqing Wang, yuqing@hawaii.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-13-00070.1

Save