• Alberta, T. L., S. J. Colucci, and J. C. Davenport, 1991: Rapid 500-mb cyclogenesis and anticyclogenesis. Mon. Wea. Rev., 119, 11861204, https://doi.org/10.1175/1520-0493(1991)119<1186:RMCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137161, https://doi.org/10.1175/1520-0493(1988)116<0137:ACAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and L. F. Bosart, 1989: A 15-year climatology of Northern Hemisphere 500 mb closed cyclone and anticyclone centers. Mon. Wea. Rev., 117, 21422164, https://doi.org/10.1175/1520-0493(1989)117<2142:AYCONH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., G. J. Hakim, K. R. Tyle, M. A. Bedrick, W. E. Bracken, M. J. Dickinson, and D. M. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“Superstorm ’93”) over eastern North America. Mon. Wea. Rev., 124, 18651891, https://doi.org/10.1175/1520-0493(1996)124<1865:LSACAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyle, J. S., and L. F. Bosart, 1983: A cyclone/anticyclone couplet over North America: An example of anticyclone evolution. Mon. Wea. Rev., 111, 10251045, https://doi.org/10.1175/1520-0493(1983)111<1025:ACCONA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brammer, A., and C. D. Thorncroft, 2015: Variability and evolution of African easterly wave structures and their relationship with tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 143, 49754995, https://doi.org/10.1175/MWR-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2009: Potential vorticity diagnosis of a tropopause polar cyclone. Mon. Wea. Rev., 137, 13581371, https://doi.org/10.1175/2008MWR2670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2010: Composite structure of tropopause polar cyclones. Mon. Wea. Rev., 138, 38403857, https://doi.org/10.1175/2010MWR3371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2012: Radiative impact on tropopause polar vortices over the Arctic. Mon. Wea. Rev., 140, 16831702, https://doi.org/10.1175/MWR-D-11-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2013: Physical mechanisms of tropopause polar vortex intensity change. J. Atmos. Sci., 70, 33593373, https://doi.org/10.1175/JAS-D-13-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cellitti, M. P., J. E. Walsh, R. M. Rauber, and D. H. Portis, 2006: Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J. Geophys. Res., 111, D02114, https://doi.org/10.1029/2005JD006273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 25772610, https://doi.org/10.1175/1520-0493(1995)123<2577:TSAEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., and J. C. Davenport, 1987: Rapid surface anticyclogenesis: Synoptic climatology and attendant large-scale circulation changes. Mon. Wea. Rev., 115, 822836, https://doi.org/10.1175/1520-0493(1987)115<0822:RSASCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., D. P. Baumhefner, and C. E. Konrad, 1999: Numerical prediction of a cold-air outbreak: A case study with ensemble forecasts. Mon. Wea. Rev., 127, 15381550, https://doi.org/10.1175/1520-0493(1999)127<1538:NPOACA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J., 1983: On the formation of continental polar air. J. Atmos. Sci., 40, 22782292, https://doi.org/10.1175/1520-0469(1983)040<2278:OTFOCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dallavalle, J. P., and L. F. Bosart, 1975: A synoptic investigation of anticyclogenesis accompanying North American polar air outbreaks. Mon. Wea. Rev., 103, 941957, https://doi.org/10.1175/1520-0493(1975)103<0941:ASIOAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci., 25, 502518, https://doi.org/10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Defant, F., and H. Taba, 1957: The threefold structure of the atmosphere and the characteristics of the tropopause. Tellus, 9, 259274, https://doi.org/10.3402/tellusa.v9i3.9112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2008: Back to Norway: An essay. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, 87–96, https://doi.org/10.1175/0065-9401-33.55.87.

    • Crossref
    • Export Citation
  • Gotaas, Y., and C. S. Benson, 1965: The effect of suspended ice crystals on radiative cooling. J. Appl. Meteor., 4, 446453, https://doi.org/10.1175/1520-0450(1965)004<0446:TEOSIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2000: Climatology of coherent structures on the extratropical tropopause. Mon. Wea. Rev., 128, 385406, https://doi.org/10.1175/1520-0493(2000)128<0385:COCSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., and A. K. Canavan, 2005: Observed cyclone–anticyclone tropopause vortex asymmetries. J. Atmos. Sci., 62, 231240, https://doi.org/10.1175/JAS-3353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., L. F. Bosart, and D. Keyser, 1995: The Ohio Valley wave-merger cyclogenesis event of 25–26 January 1978. Part I: Multiscale case study. Mon. Wea. Rev., 123, 26632692, https://doi.org/10.1175/1520-0493(1995)123<2663:TOVWMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartjenstein, G., and R. Bleck, 1991: Factors affecting cold-air outbreaks east of the Rocky Mountains. Mon. Wea. Rev., 119, 22802292, https://doi.org/10.1175/1520-0493(1991)119<2280:FACAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499, https://doi.org/10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 1996: Relationships between the intensity of cold-air outbreaks and the evolution of synoptic and planetary-scale features over North America. Mon. Wea. Rev., 124, 10671083, https://doi.org/10.1175/1520-0493(1996)124<1067:RBTIOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, and S. J. Colucci, 1989: An examination of extreme cold air outbreaks over eastern North America. Mon. Wea. Rev., 117, 26872700, https://doi.org/10.1175/1520-0493(1989)117<2687:AEOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lefevre, R. J., and J. W. Nielsen-Gammon, 1995: An objective climatology of mobile troughs in the Northern Hemisphere. Tellus, 47A, 638655, https://doi.org/10.3402/tellusa.v47i5.11558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lillo, S. P., S. M. Cavallo, D. B. Parsons, and C. P. Riedel, 2020: The role of a tropopause polar vortex in the January 2019 Arctic outbreak. 33rd Conf. on Climate Variability and Change, Boston, MA, Amer. Meteor. Soc., 5A.1, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/369323.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, Z. B., 2017: A climatological and multiscale analysis of cold air outbreaks in the Northeast United States. M.S. thesis, Dept. of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 91 pp.

  • Namias, J., 1978: Multiple causes of the North American abnormal winter 1976–77. Mon. Wea. Rev., 106, 279295, https://doi.org/10.1175/1520-0493(1978)106<0279:MCOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., S. Pfahl, I. Rudeva, I. Simmonds, H. Sodemann, and H. Wernli, 2014: The role of extratropical cyclones and fronts for Southern Ocean freshwater fluxes. J. Climate, 27, 62056224, https://doi.org/10.1175/JCLI-D-13-00409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., E. Rouges, F. Aemisegger, and H. Wernli, 2019: On the thermodynamic preconditioning of Arctic air masses and the role of tropopause polar vortices for cold air outbreaks from Fram Strait. J. Geophys. Res. Atmos., 124, 11033–11 050, https://doi.org/10.1029/2019JD030570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pyle, M. E., D. Keyser, and L. F. Bosart, 2004: A diagnostic study of jet streaks: Kinematic signatures and relationship to coherent tropopause disturbances. Mon. Wea. Rev., 132, 297319, https://doi.org/10.1175/1520-0493(2004)132<0297:ADSOJS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. F. Danielsen, 1959: Fronts in the vicinity of the tropopause. Arch. Meteor. Geophys. Bioklimatol., A11, 117, https://doi.org/10.1007/BF02247637.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., and R. V. Rohli, 1991: Florida citrus freezes and polar anticyclones in the Great Plains. J. Climate, 4, 11031113, https://doi.org/10.1175/1520-0442(1991)004<1103:FCFAPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1988: Life history of mobile troughs in the upper westerlies. Mon. Wea. Rev., 116, 26292648, https://doi.org/10.1175/1520-0493(1988)116<2629:LHOMTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, L. F. Bosart, G. J. Hakim, M. A. Bedrick, M. J. Dickinson, and K. R. Tyle, 1997: The 1993 Superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125, 539, https://doi.org/10.1175/1520-0493(1997)125<0005:TSCSFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., T. Hampel, and A. J. Krueger, 1987: The Arctic tropopause fold. Mon. Wea. Rev., 115, 444454, https://doi.org/10.1175/1520-0493(1987)115<0444:TATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and I. Rudeva, 2012: The great Arctic cyclone of August 2012. Geophys. Res. Lett., 39, L23709, https://doi.org/10.1029/2012GL054259.

  • Smith, E. T., and S. C. Sheridan, 2018: The characteristics of extreme cold events and cold air outbreaks in the eastern United States. Int. J. Climatol., 38, e807e820, https://doi.org/10.1002/joc.5408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szapiro, N., and S. Cavallo, 2018: TPVTrack v1.0: A watershed segmentation and overlap correspondence method for tracking tropopause polar vortices. Geosci. Model Dev., 11, 51735187, https://doi.org/10.5194/gmd-11-5173-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2015: Comparison of wave packets associated with extratropical transition and winter cyclones. Mon. Wea. Rev., 143, 17821803, https://doi.org/10.1175/MWR-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. K., and J. R. Gyakum, 2011: The development of Arctic air masses in Northwest Canada and their behavior in a warming climate. J. Climate, 24, 46184633, https://doi.org/10.1175/2011JCLI3855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. K., J. R. Gyakum, and S. M. Milrad, 2013: A thermodynamic analysis of an intense North American Arctic air mass. Mon. Wea. Rev., 141, 166181, https://doi.org/10.1175/MWR-D-12-00176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., D. Keyser, K. F. Brill, and C. H. Wash, 1985: The Presidents’ Day cyclone of 18–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 962988, https://doi.org/10.1175/1520-0493(1985)113<0962:TPDCOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., A. S. Phillips, D. H. Portis, and W. L. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948–99. J. Climate, 14, 26422658, https://doi.org/10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., A. H. Sobel, and L. M. Polvani, 2017: What is the polar vortex and how does it influence weather? Bull. Amer. Meteor. Soc., 98, 3744, https://doi.org/10.1175/BAMS-D-15-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westby, R. M., and R. X. Black, 2015: Development of anomalous temperature regimes over the southeastern United States: Synoptic behavior and role of low-frequency modes. Wea. Forecasting, 30, 553570, https://doi.org/10.1175/WAF-D-14-00093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 109 109 35
Full Text Views 47 47 25
PDF Downloads 63 63 29

A Climatological Analysis of the Linkages between Tropopause Polar Vortices, Cold Pools, and Cold Air Outbreaks over the Central and Eastern United States

View More View Less
  • 1 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
© Get Permissions
Restricted access

Abstract

Coherent vortices in the vicinity of the tropopause, referred to as tropopause polar vortices (TPVs), may be associated with tropospheric-deep cold pools. TPVs and associated cold pools transported from high latitudes to middle latitudes may play important roles in the development of cold air outbreaks (CAOs). The purpose of this study is to examine climatological linkages between TPVs, cold pools, and CAOs occurring in the central and eastern United States. To conduct this study, 1979–2015 climatologies of TPVs and cold pools are constructed using the ERA-Interim dataset and an objective tracking algorithm, and are compared to a 1979–2015 climatology of CAOs occurring in six NCEI-defined climate regions over the central and eastern United States. The climatologies of TPVs and cold pools indicate that central and eastern North America is a preferred corridor for their equatorward transport, and that the occurrence frequency of TPVs and cold pools is higher over northern regions of the United States compared to southern regions of the United States. Correspondingly, there is a higher percentage of CAOs linked to cold pools associated with TPVs over northern regions of the United States (32.1%–35.7%) compared to southern regions of the United States (4.4%–12.5%). TPVs and cold pools contributing to CAOs form most frequently over northern Canada and the Canadian Archipelago, and generally move southeastward toward southern Canada and the northern United States. TPVs and cold pools contributing to CAOs tend to be statistically significantly colder and longer lived when compared to all TPVs and cold pools transported to middle latitudes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin A. Biernat, kbiernat@albany.edu

Abstract

Coherent vortices in the vicinity of the tropopause, referred to as tropopause polar vortices (TPVs), may be associated with tropospheric-deep cold pools. TPVs and associated cold pools transported from high latitudes to middle latitudes may play important roles in the development of cold air outbreaks (CAOs). The purpose of this study is to examine climatological linkages between TPVs, cold pools, and CAOs occurring in the central and eastern United States. To conduct this study, 1979–2015 climatologies of TPVs and cold pools are constructed using the ERA-Interim dataset and an objective tracking algorithm, and are compared to a 1979–2015 climatology of CAOs occurring in six NCEI-defined climate regions over the central and eastern United States. The climatologies of TPVs and cold pools indicate that central and eastern North America is a preferred corridor for their equatorward transport, and that the occurrence frequency of TPVs and cold pools is higher over northern regions of the United States compared to southern regions of the United States. Correspondingly, there is a higher percentage of CAOs linked to cold pools associated with TPVs over northern regions of the United States (32.1%–35.7%) compared to southern regions of the United States (4.4%–12.5%). TPVs and cold pools contributing to CAOs form most frequently over northern Canada and the Canadian Archipelago, and generally move southeastward toward southern Canada and the northern United States. TPVs and cold pools contributing to CAOs tend to be statistically significantly colder and longer lived when compared to all TPVs and cold pools transported to middle latitudes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin A. Biernat, kbiernat@albany.edu
Save