• Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972214, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32, 116125, https://doi.org/10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. M. Haberlie, and J. Strohm, 2019: A climatology of quasi-linear convective systems and their hazards in the United States. Wea. Forecasting, 34, 16051631, https://doi.org/10.1175/WAF-D-19-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, T. B., 1968: Gravity currents and related phenomena. J. Fluid Mech., 31, 209248, https://doi.org/10.1017/S0022112068000133.

  • Bosart, L. F., A. Seimon, K. D. LaPenta, and M. J. Dickinson, 2006: Supercell tornadogenesis over complex terrain: The Great Barrington, Massachusetts, tornado on 29 May 1995. Wea. Forecasting, 21, 897922, https://doi.org/10.1175/WAF957.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and M. D. Parker, 2010: Observations of a squall line and its near environment using high-frequency rawinsonde launches during VORTEX2. Mon. Wea. Rev., 138, 40764097, https://doi.org/10.1175/2010MWR3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. R. Hjelmfelt, and P. L. Smith, 2006: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673688, https://doi.org/10.1175/WAF949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140156, https://doi.org/10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coen, J. L., and W. Schroeder, 2017: Coupled weather-fire modeling: From research to operational forecasting. Fire Manage. Today, 75, 3945.

    • Search Google Scholar
    • Export Citation
  • Coen, J. L., E. N. Stavros, and J. A. Fites-Kaufman, 2018: Deconstructing the King megafire. Ecol. Appl., 28, 15651580, https://doi.org/10.1002/eap.1752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., R. L. George, P. J. Wetzel, and R. L. McAnelly, 1983: A long-lived mesoscale convective complex. Part I: The mountain-generated component. Mon. Wea. Rev., 111, 18931918, https://doi.org/10.1175/1520-0493(1983)111<1893:ALLMCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and Y. L. Huang, 2016: High-resolution simulations of non-Boussinesq downslope gravity currents in the acceleration phase. Phys. Fluids, 28, 026602, https://doi.org/10.1063/1.4942239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., C. E. Ozdemir, M. I. Cantero, and S. Balachandar, 2012: Gravity currents from instantaneous sources down a slope. J. Hydraul. Eng., 138, 237246, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Falco, M. C., L. Ottolenghi, and C. Adduce, 2020: Dynamics of gravity currents flowing up a slope and implications for entrainment. J. Hydraul. Eng., 146, 04020011, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, https://doi.org/10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., D. J. Stensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849, https://doi.org/10.1175/2008MWR2528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ESRI, 2011: ArcGIS Desktop: Release 10. Environmental Systems Research Institute.

  • Friedrich, K., D. E. Kingsmill, and C. R. Young, 2005: Misocyclone characteristics along Florida gust fronts during CaPE. Mon. Wea. Rev., 133, 33453367, https://doi.org/10.1175/MWR3040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilliam, R. C., S. Raman, and D. D. S. Niyogi, 2004: Observational and numerical study on the influence of large-scale flow direction and coastline shape on sea-breeze evolution. Bound.-Layer Meteor., 111, 275300, https://doi.org/10.1023/B:BOUN.0000016494.99539.5a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goens, D. W., and P. L. Andrews, 1998: Weather and fire behavior factors related to the 1990 Dude Fire near Payson, AZ. Second Conf. on Fire and Forest Meteorology, Phoenix, AZ, Amer. Meteor. Soc., 153–158.

  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 14291440, https://doi.org/10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haines, D. A., 1988: Downbursts and wildland fires: A dangerous combination. Fire Manage. Today, 49, 810.

  • Hanley, D. E., P. Cunningham, and S. L. Goodrick, 2013: Interaction between a wildfire and the sea-breeze front. Remote Sensing and Modeling Applications to Wildland Fires, J. J. Qu et al., Eds., Springer, 81–98, https://doi.org/10.1007/978-3-642-32530-4_7.

    • Crossref
    • Export Citation
  • Hardy, K., and L. K. Comfort, 2015: Dynamic decision processes in complex, high-risk operations: The Yarnell Hill Fire, June 30, 2013. Saf. Sci., 71, 3947, https://doi.org/10.1016/j.ssci.2014.04.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., L. Zhao, T. Lin, P. Hu, Y. Iv, H.-C. Ho, and Y.-T. Lin, 2017: Hydrodynamics of gravity currents down a ramp in linearly stratified environments. J. Hydraul. Eng., 143, 04016085, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., R. S. Schumacher, J. H. Ruppert, D. T. Lindsey, J. E. Ruthford, and L. Kriederman, 2014: The role of convective outflow in the Waldo Canyon Fire. Mon. Wea. Rev., 142, 30613080, https://doi.org/10.1175/MWR-D-13-00361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joint Fire Science Program, 2017: Validating mesoscale, atmospheric boundary prediction models and tools. Project Announcement FA-FON0017-0001, 25 pp., https://www.firescience.gov/AFPs/17-1-05/17-1-05_FON_Announcement.pdf.

  • Jorgensen, D. P., Z. Pu, P. O. Persson, and W. Tao, 2003: Variations associated with cores and gaps of a Pacific narrow cold frontal rainband. Mon. Wea. Rev., 131, 27052729, https://doi.org/10.1175/1520-0493(2003)131<2705:VAWCAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karels, J., and M. Dudley, 2013: Yarnell Hill Fire serious accident investigation report. Arizona State Forestry Division, 116 pp., https://sites.google.com/site/yarnellreport/.

  • Keighton, S., J. Jackson, J. Guyer, and J. Peters, 2007: A preliminary analysis of severe quasilinear mesoscale convective systems crossing the Appalachians. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., P2.18, https://ams.confex.com/ams/pdfpapers/123614.pdf.

  • Kern, J., W. Jones, J. Murrian, and J. DiMaggio, 2004: Review of burnover incident at St Sebastian River Preserve State Park, Indian River County, Florida, 24 February 2004. Florida Department of Environmental Protection, 25 pp.

  • Kishcha, P., and Coauthors, 2016: Modelling of a strong dust event in the complex terrain of the Dead Sea valley during the passage of a gust front. Tellus, 68B, 29751, https://doi.org/10.3402/tellusb.v68.29751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and C. A. Ray, 1997: Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Wea. Forecasting, 12, 5677, https://doi.org/10.1175/1520-0434(1997)012<0056:MOSCZI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaPenta, K. D., L. F. Bosart, T. J. Galarneau, and M. J. Dickinson, 2005: A multiscale examination of the 31 May 1998 Mechanicville, New York, tornado. Wea. Forecasting, 20, 494516, https://doi.org/10.1175/WAF875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardi, V., C. Adduce, G. Sciortino, and M. La Rocca, 2015: Gravity currents flowing upslope: Laboratory experiments and shallow-water simulations. Phys. Fluids, 27, 016602, https://doi.org/10.1063/1.4905305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lompar, M., M. Ćurić, and D. Romanic, 2018: Implementation of a gust front head collapse scheme in the WRF numerical model. Atmos. Res., 203, 231245, https://doi.org/10.1016/j.atmosres.2017.12.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luchetti, N. T., K. Friedrich, C. E. Rodell, and J. K. Lundquist, 2020: Characterizing thunderstorm gust fronts near complex terrain. Mon. Wea. Rev., 148, 32673286, https://doi.org/10.1175/MWR-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marleau, L. J., M. R. Flynn, and B. R. Sutherland, 2014: Gravity currents propagating up a slope. Phys. Fluids, 26, 046605, https://doi.org/10.1063/1.4872222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., and W. R. Cotton, 1986: Meso-β-scale characteristics of an episode of meso-α-scale convective complexes. Mon. Wea. Rev., 114, 17401770, https://doi.org/10.1175/1520-0493(1986)114<1740:MSCOAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadolski, V., 1998: Automated Surface Observing System (ASOS) user’s guide. National Oceanic and Atmospheric Administration, Department of Defense, Federal Aviation Administration, U.S. Navy, 74 pp., https://www.weather.gov/media/asos/aum-toc.pdf.

  • NWS, 2008: Cup & vane wind data processing within ASOS. NWS, 2 pp., https://www.weather.gov/media/asos/ASOS%20Implementation/IFWS_BelfordWS_comparison.pdf.

  • Paez, G., M. Strojnik, and M. K. Scholl, 2015: Analysis of propagation of complex fire: Case of the Yarnell Hill Fire 1. Proc. SPIE, 9608, 96081L, https://doi.org/10.1117/12.2191725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and D. A. Ahijevych, 2007: Convective episodes in the east-central United States. Mon. Wea. Rev., 135, 37073727, https://doi.org/10.1175/2007MWR2098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. K., and T. L. Baxter, 1986: The gust front. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., University of Oklahoma, 187–196.

  • Schneider, D. G., 2009: The impact of terrain on three cases of tornadogenesis in the Great Tennessee Valley. Electron. J. Oper. Meteor., EJ11, 133, https://nwafiles.nwas.org/ej/pdf/2009-EJ11.pdf.

    • Search Google Scholar
    • Export Citation
  • Sharples, J. J., R. H. D. McRae, C. Simpson, P. Fox-Hughes, and C. Clements, 2017: Terrain-controlled airflows. Fire Manage. Today, 75, 2024.

    • Search Google Scholar
    • Export Citation
  • Shipley, S. T., A. Peterlin, and S. Cantrell, 2009: Radar visualization and occultation in 4-dimensions using Google Earth. 25th Conf. on IIPS, Phoenix, AZ, Amer Meteor. Soc., 12.1, https://ams.confex.com/ams/pdfpapers/150724.pdf.

  • Simpson, J. E., 1969: A comparison between laboratory and atmospheric density currents. Quart. J. Roy. Meteor. Soc., 95, 758765, https://doi.org/10.1002/qj.49709540609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., and R. E. Britter, 1980: A laboratory model of an atmospheric mesofront. Quart. J. Roy. Meteor. Soc., 106, 485500, https://doi.org/10.1002/qj.49710644907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surveys and Investigation Staff, 1981: A report to the committee on appropriations U.S. House of Representatives on wildfire on Merritt Island. December 1981, 34 pp., https://www.wildfirelessons.net/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=de70dc82-1760-487f-b1d4-05a8d11293cc&forceDialog=0.

  • Tucker, D. F., and N. A. Crook, 1999: The generation of a mesoscale convective system from mountain convection. Mon. Wea. Rev., 127, 12591273, https://doi.org/10.1175/1520-0493(1999)127<1259:TGOAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., C. J. Kessinger, and D. E. Kingsmill, 1994: Kinematic, thermodynamic, and visual structure of low-reflectivity microbursts. Mon. Wea. Rev., 122, 7292, https://doi.org/10.1175/1520-0493(1994)122<0072:KTAVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 85 85 20
Full Text Views 14 14 4
PDF Downloads 18 18 5

Evaluating Thunderstorm Gust Fronts in New Mexico and Arizona

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • 2 Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
© Get Permissions
Restricted access

Abstract

Strong winds generated by thunderstorm gust fronts can cause sudden changes in fire behavior and threaten the safety of wildland firefighters. Wildfires in complex terrain are particularly vulnerable as gust fronts can be channeled and enhanced by local topography. Despite this, knowledge of gust front characteristics primarily stems from studies of well-organized thunderstorms in flatter areas such as the Great Plains, where the modification of gust fronts by topography is less likely. Here, we broaden the investigation of gust fronts in complex terrain by statistically comparing characteristics of gust fronts that are pushed uphill and propagate atop the Mogollon Rim in Arizona to those that propagate down into and along the Rio Grande Valley in New Mexico. Using operational WSR-88D data and in situ observations from Automated Surface Observing System (ASOS) stations, 122 gust fronts in these regions are assessed to quantify changes in temperature, wind, relative humidity, and propagation speed as they pass over the weather stations. Gust fronts that propagated down into and along the Rio Grande Valley in New Mexico were generally associated with faster propagation speeds, larger decreases in temperature, and larger increases in wind speeds compared to gust fronts that reached the crest of the Mogollon Rim in Arizona. Gust fronts atop the Mogollon Rim in Arizona behaved less in accordance with density current theory compared to those in the Rio Grande Valley in New Mexico. The potential reasons for these results, and their implications for our understanding of terrain influence on gust front characteristics, are discussed.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas Luchetti, nicholas.luchetti@colorado.edu

Abstract

Strong winds generated by thunderstorm gust fronts can cause sudden changes in fire behavior and threaten the safety of wildland firefighters. Wildfires in complex terrain are particularly vulnerable as gust fronts can be channeled and enhanced by local topography. Despite this, knowledge of gust front characteristics primarily stems from studies of well-organized thunderstorms in flatter areas such as the Great Plains, where the modification of gust fronts by topography is less likely. Here, we broaden the investigation of gust fronts in complex terrain by statistically comparing characteristics of gust fronts that are pushed uphill and propagate atop the Mogollon Rim in Arizona to those that propagate down into and along the Rio Grande Valley in New Mexico. Using operational WSR-88D data and in situ observations from Automated Surface Observing System (ASOS) stations, 122 gust fronts in these regions are assessed to quantify changes in temperature, wind, relative humidity, and propagation speed as they pass over the weather stations. Gust fronts that propagated down into and along the Rio Grande Valley in New Mexico were generally associated with faster propagation speeds, larger decreases in temperature, and larger increases in wind speeds compared to gust fronts that reached the crest of the Mogollon Rim in Arizona. Gust fronts atop the Mogollon Rim in Arizona behaved less in accordance with density current theory compared to those in the Rio Grande Valley in New Mexico. The potential reasons for these results, and their implications for our understanding of terrain influence on gust front characteristics, are discussed.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas Luchetti, nicholas.luchetti@colorado.edu
Save