• Abadi, M., and et al. , 2015: TensorFlow: Large-scale machine learning on heterogeneous systems. https://arxiv.org/abs/1603.04467.

  • Ambrogioni, L., U. Güçlü, M. A. van Gerven, and E. Maris, 2017: The kernel mixture network: A nonparametric method for conditional density estimation of continuous random variables. https://arxiv.org/abs/1705.07111.

  • Bach, S., A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, 2015: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE, 10, e0130140, https://doi.org/10.1371/journal.pone.0130140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakker, K., K. Whan, W. Knap, and M. Schmeits, 2019: Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation. Sol. Energy, 191, 138150, https://doi.org/10.1016/j.solener.2019.08.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, S., and S. Lerch, 2016: Mixture EMOS model for calibrating ensemble forecasts of wind speed. Environmetrics, 27, 116130, https://doi.org/10.1002/env.2380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and et al. , 2017: The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system. Mon. Wea. Rev., 145, 19191935, https://doi.org/10.1175/MWR-D-16-0417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. M., 1994: Mixture density networks. Tech. Rep. NCRG/94/004, Aston University, Birmingham, AL, 24 pp.

  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Chollet, F., and et al. , 2015: Keras. Accessed 10 May 2019, https://keras.io.

  • D’Isanto, A., and K. L. Polsterer, 2018: Photometric redshift estimation via deep learning: Generalized and pre-classification-less, image based, fully probabilistic redshifts. Astron. Astrophys., 609, A111, https://doi.org/10.1051/0004-6361/201731326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dupuy, F., O. Mestre, and L. Pfitzner, 2020: Arpege cloud cover forecast post-processing with convolutional neural network. EGU General Assembly 2020, EGU2020-18325, https://doi.org/10.5194/egusphere-egu2020-18325.

    • Crossref
    • Export Citation
  • Gagne, D. J., II, S. E. Haupt, D. W. Nychka, and G. Thompson, 2019: Interpretable deep learning for spatial analysis of severe hailstorms. Mon. Wea. Rev., 147, 28272845, https://doi.org/10.1175/MWR-D-18-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and A. E. Raftery, 2005: Weather forecasting with ensemble methods. Science, 310, 248249, https://doi.org/10.1126/science.1115255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and A. E. Raftery, 2007: Strictly proper scoring rules, prediction, and estimation. J. Amer. Stat. Assoc., 102, 359378, https://doi.org/10.1198/016214506000001437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodfellow, I., Y. Bengio, and A. Courville, 2016: Deep Learning. MIT Press, http://www.deeplearningbook.org.

  • Grimit, E. P., T. Gneiting, V. J. Berrocal, and N. A. Johnson, 2006: The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification. Quart. J. Roy. Meteor. Soc., 132, 29252942, https://doi.org/10.1256/qj.05.235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ioannidis, E., K. Whan, and M. Schmeits, 2018: Probabilistic wind speed forecasting using parametric and non-parametric statistical post-processing methods. KNMI Internal Rep. IR-2018-07, 78 pp., http://bibliotheek.knmi.nl/knmipubIR/IR2018-07.pdf.

  • Kingma, D. P., and J. Ba, 2014: Adam: A method for stochastic optimization. https://arxiv.org/abs/1412.6980.

  • Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: ImageNet classification with deep convolutional neural networks. Adv. Neural Info. Process. Syst., 25, 10971105, https://doi.org/10.1145/3065386.

    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. McGovern, and D. J. Gagne II, 2019: Deep learning for spatially explicit prediction of synoptic-scale fronts. Wea. Forecasting, 34, 11371160, https://doi.org/10.1175/WAF-D-18-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeCun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. Nature, 521, 436444, https://doi.org/10.1038/nature14539.

  • Lerch, S., and T. L. Thorarinsdottir, 2013: Comparison of non-homogeneous regression models for probabilistic wind speed forecasting. Tellus, 65A, 21206, https://doi.org/10.3402/tellusa.v65i0.21206.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and et al. , 2016: Application of deep convolutional neural networks for detecting extreme weather in climate datasets. https://arxiv.org/abs/1605.01156.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheson, J. E., and R. L. Winkler, 1976: Scoring rules for continuous probability distributions. Manage. Sci., 22, 10871096, https://doi.org/10.1287/mnsc.22.10.1087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, N., 2006: Quantile regression forests. J. Mach. Learn. Res., 7, 983999.

  • Oord, A. V., N. Kalchbrenner, and K. Kavukcuoglu, 2016: Pixel recurrent neural networks. Proc. 33rd Int. Conf. on Machine Learning, M. F. Balcan, and K. Q. Weinberger, Eds., Proceedings of Machine Learning Research, Vol. 48, 1747–1756, http://proceedings.mlr.press/v48/oord16.html.

  • Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather forecasts. Mon. Wea. Rev., 146, 38853900, https://doi.org/10.1175/MWR-D-18-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and M. Prabhat, 2019: Deep learning and process understanding for data-driven Earth system science. Nature, 566, 195204, https://doi.org/10.1038/s41586-019-0912-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scher, S., and G. Messori, 2018: Predicting weather forecast uncertainty with machine learning. Quart. J. Roy. Meteor. Soc., 144, 28302841, https://doi.org/10.1002/qj.3410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and D. Möller, 2015: Probabilistic wind speed forecasting on a grid based on ensemble model output statistics. Ann. Appl. Stat., 9, 13281349, https://doi.org/10.1214/15-AOAS843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., M. B. Switanek, R. P. Worsnop, and T. M. Hamill, 2020: Using artificial neural networks for generating probabilistic subseasonal precipitation forecasts over California. Mon. Wea. Rev., 148, 34893506, https://doi.org/10.1175/MWR-D-20-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo, 2017: Deep learning for precipitation nowcasting: A benchmark and a new model. https://arxiv.org/abs/1706.03458.

    • Search Google Scholar
    • Export Citation
  • Taillardat, M., O. Mestre, M. Zamo, and P. Naveau, 2016: Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics. Mon. Wea. Rev., 144, 23752393, https://doi.org/10.1175/MWR-D-15-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., and T. Gneiting, 2010: Probabilistic forecasts of wind speed: Ensemble model output statistics by using heteroscedastic censored regression. J. Roy. Stat. Soc., 173A, 371388, https://doi.org/10.1111/j.1467-985X.2009.00616.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Plas, E., M. Schmeits, N. Hooijman, and K. Kok, 2017: A comparative verification of high-resolution precipitation forecasts using model output statistics. Mon. Wea. Rev., 145, 40374054, https://doi.org/10.1175/MWR-D-16-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veldkamp, S., 2020: Statistical postprocessing of windspeed forecasts using convolutional neural networks. M.S. thesis, Universiteit Utrecht, 54 pp., https://dspace.library.uu.nl/handle/1874/393399.

  • Weyn, J. A., D. R. Durran, and R. Caruana, 2019: Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data. J. Adv. Model. Earth Syst., 11, 26802693, https://doi.org/10.1029/2019MS001705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whan, K., and M. Schmeits, 2018: Comparing area probability forecasts of (extreme) local precipitation using parametric and machine learning statistical postprocessing methods. Mon. Wea. Rev., 146, 36513673, https://doi.org/10.1175/MWR-D-17-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J., and et al. , 2015: The Wind Forecast Improvement Project (WFIP): A public–private partnership addressing wind energy forecast needs. Bull. Amer. Meteor. Soc., 96, 16991718, https://doi.org/10.1175/BAMS-D-14-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 178 178 102
Full Text Views 45 45 26
PDF Downloads 58 58 35

Statistical Postprocessing of Wind Speed Forecasts Using Convolutional Neural Networks

View More View Less
  • 1 Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
  • | 2 Mathematical Institute, Utrecht University, Utrecht, Netherlands
© Get Permissions
Restricted access

Abstract

Current statistical postprocessing methods for probabilistic weather forecasting are not capable of using full spatial patterns from the numerical weather prediction (NWP) model. In this paper, we incorporate spatial wind speed information by using convolutional neural networks (CNNs) and obtain probabilistic wind speed forecasts in the Netherlands for 48 h ahead, based on KNMI’s deterministic HARMONIE-AROME NWP model. The probabilistic forecasts from the CNNs are shown to have higher Brier skill scores for medium to higher wind speeds, as well as a better continuous ranked probability score (CRPS) and logarithmic score, than the forecasts from fully connected neural networks and quantile regression forests. As a secondary result, we have compared the CNNs using three different density estimation methods [quantized softmax (QS), kernel mixture networks, and fitting a truncated normal distribution], and found the probabilistic forecasts based on the QS method to be best.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maurice Schmeits, maurice.schmeits@knmi.nl

Abstract

Current statistical postprocessing methods for probabilistic weather forecasting are not capable of using full spatial patterns from the numerical weather prediction (NWP) model. In this paper, we incorporate spatial wind speed information by using convolutional neural networks (CNNs) and obtain probabilistic wind speed forecasts in the Netherlands for 48 h ahead, based on KNMI’s deterministic HARMONIE-AROME NWP model. The probabilistic forecasts from the CNNs are shown to have higher Brier skill scores for medium to higher wind speeds, as well as a better continuous ranked probability score (CRPS) and logarithmic score, than the forecasts from fully connected neural networks and quantile regression forests. As a secondary result, we have compared the CNNs using three different density estimation methods [quantized softmax (QS), kernel mixture networks, and fitting a truncated normal distribution], and found the probabilistic forecasts based on the QS method to be best.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maurice Schmeits, maurice.schmeits@knmi.nl
Save