• Agudelo, P., C. D. Hoyos, J. Curry, and P. J. Webster, 2011: Probabilistic discrimination between large-scale environments of intensifying and decaying African easterly waves. Climate Dyn., 36, 13791401, https://doi.org/10.1007/s00382-010-0851-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albignat, J. P., and R. J. Reed, 1980: The origin of African wave disturbances during phase III of GATE. Mon. Wea. Rev., 108, 18271839, https://doi.org/10.1175/1520-0493(1980)108<1827:TOOAWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnault, J., and F. Roux, 2011: Characteristics of African easterly waves associated with tropical cyclogenesis in the Cape Verde Islands region in July–August–September of 2004–2008. Atmos. Res., 100, 6182, https://doi.org/10.1016/j.atmosres.2010.12.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, L. A., R. J. Pasch, and J.-G. Jiing, 2000: Atlantic tropical systems of 1996 and 1997: Years of contrasts. Mon. Wea. Rev., 128, 36953706, https://doi.org/10.1175/1520-0493(2000)128<3695:ATSOAY>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belanger, J. I., M. T. Jelinek, and J. A. Curry, 2016: A climatology of easterly waves in the tropical Western Hemisphere. Geosci. Data J., 3, 4049, https://doi.org/10.1002/gdj3.40.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G., and C. D. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752766, https://doi.org/10.1175/MWR2884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G., C. D. Thorncroft, and T. Hewson, 2007: African easterly waves during 2004—Analysis using objective techniques. Mon. Wea. Rev., 135, 12511267, https://doi.org/10.1175/MWR3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou Karam, D., C. Flamant, P. Tulet, M. C. Todd, J. Pelon, and E. Williams, 2009: Dry cyclogenesis and dust mobilization in the intertropical discontinuity of the West African monsoon: A case study. J. Geophys. Res., 114, D05115, https://doi.org/10.1029/2008JD010952.

    • Search Google Scholar
    • Export Citation
  • Brammer, A., and C. D. Thorncroft, 2015: Variability and evolution of African easterly wave structures and their relationship with tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 143, 49754995, https://doi.org/10.1175/MWR-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brammer, A., and C. D. Thorncroft, 2017: Spatial and temporal variability of the three-dimensional flow around African easterly waves. Mon. Wea. Rev., 145, 28792895, https://doi.org/10.1175/MWR-D-16-0454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brannan, A. L., and E. R. Martin, 2019: Future characteristics of African easterly wave tracks. Climate Dyn., 52, 55675584, https://doi.org/10.1007/s00382-018-4465-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969: Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Wea. Rev., 97, 256276, https://doi.org/10.1175/1520-0493(1969)097<0256:SHOTAD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecelski, S. F., and D.-L. Zhang, 2013: Genesis of Hurricane Julia (2010) within an African easterly wave: Low-level vortices and upper-level warming. J. Atmos. Sci., 70, 37993817, https://doi.org/10.1175/JAS-D-13-043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Y.-C. Liu, 2014: The relation between dry vortex merger and tropical cyclone genesis over the Atlantic Ocean. J. Geophys. Res. Atmos., 119, 11 64111 661, https://doi.org/10.1002/2014JD021749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2006: Characteristics of African easterly waves depicted by ECMWF reanalyses for 1991–2000. Mon. Wea. Rev., 134, 35393566, https://doi.org/10.1175/MWR3259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, and A. J. Clark, 2008: North Atlantic hurricanes contributed by African easterly waves north and south of the African easterly jet. J. Climate, 21, 67676776, https://doi.org/10.1175/2008JCLI2523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y. M., C. D. Thorncroft, and G. N. Kiladis, 2019: Two contrasting African easterly wave behaviors. J. Atmos. Sci., 76, 17531768, https://doi.org/10.1175/JAS-D-18-0300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Conell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, P. de Félice, and H. Laurent, 1999: Easterly waves regimes and associated convection over West Africa and the tropical Atlantic: Results from the NCEP/NCAR and ECMWF reanalyses. Climate Dyn., 15, 795822, https://doi.org/10.1007/s003820050316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, and P. de Felice, 2002: Energetics of easterly wave disturbances over West Africa and the tropical Atlantic: A climatology from 1979–95 NCEP/NCAR reanalyses. Climate Dyn., 18, 487500, https://doi.org/10.1007/s00382-001-0195-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieng, A. L., S. M. Sall, L. Eymard, M. Leduc-Leballeur, and A. Lazar, 2017: Trains of African easterly waves and their relationship to tropical cyclone genesis in the eastern Atlantic. Mon. Wea. Rev., 145, 599616, https://doi.org/10.1175/MWR-D-15-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., 1990: Convection over tropical Africa and the Atlantic Ocean during northern summer. Part II: Modulation by easterly waves. Mon. Wea. Rev., 118, 18551868, https://doi.org/10.1175/1520-0493(1990)118<1855:COTAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., 2015: Initiation and intensification of tropical depressions over the Southern Indian Ocean: Influence of the MJO. Mon. Wea. Rev., 143, 21702191, https://doi.org/10.1175/MWR-D-14-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., S. J. Camargo, and A. H. Sobel, 2017: Role of the convection scheme in modeling initiation and intensification of tropical depressions over the North Atlantic. Mon. Wea. Rev., 145, 14951509, https://doi.org/10.1175/MWR-D-16-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.

  • Erickson, C. O., 1963: An incipient hurricane near the West African coast. Mon. Wea. Rev., 91, 6168, https://doi.org/10.1175/1520-0493(1963)091<0061:AIHNTW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., and A. Reiner, 2003: Spatio-temporal variability of the relation between African easterly waves and West African squall lines in 1998 and 1999. J. Geophys. Res., 108, 4332, https://doi.org/10.1029/2002JD002816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, https://doi.org/10.1007/BF01277501.

  • Hamilton, H. L., K. M. Núñez Ocasio, J. L. Evans, G. S. Young, and J. D. Fuentes, 2020: Topographic influence on the African easterly jet and African easterly wave energetics. J. Geophys. Res. Atmos., 125, e2019JD032138, https://doi.org/10.1029/2019JD032138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hankes, I., Z. Wang, G. Zhang, and C. L. Fritz, 2015: Merger of African easterly waves and formation of Cape Verde storms. Quart. J. Roy. Meteor. Soc., 141, 13061319, https://doi.org/10.1002/qj.2439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and A. Aiyyer, 2017: Reduced African easterly wave activity with quadrupled CO2 in the superparameterized CESM. J. Climate, 30, 82538274, https://doi.org/10.1175/JCLI-D-16-0822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., B. J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Wea. Rev., 131, 20122037, https://doi.org/10.1175/1520-0493(2003)131<2012:ACORRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, K. Hodges, and A. Aiyyer, 2007: West African storm tracks and their relationship to Atlantic tropical cyclones. J. Climate, 20, 24682483, https://doi.org/10.1175/JCLI4139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419, https://doi.org/10.1175/2009MWR2760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kebe, I., I. Diallo, M. B. Sylla, F. De Sales, and A. Diedhiou, 2020: Late 21st century projected changes in the relationship between precipitation, African easterly jet, and African easterly waves. Atmosphere, 11, 353, https://doi.org/10.3390/atmos11040353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., R. Carbone, V. Levizzani, and J. Tuttle, 2008: The propagation and diurnal cycles of deep convection in northern tropical Africa. Quart. J. Roy. Meteor. Soc., 134, 93109, https://doi.org/10.1002/qj.194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, S. Janicot, and P. Knippertz, 2010: Links between African easterly waves, midlatitude circulation and intraseasonal pulsations of the West African heat low. Quart. J. Roy. Meteor. Soc., 136, 141158, https://doi.org/10.1002/qj.555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401412, https://doi.org/10.2151/jmsj1965.72.3_401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., and W. B. Rossow, 2018: The interaction between deep convection and easterly wave activity over Africa: Convective transitions and mechanisms. Mon. Wea. Rev., 146, 19451961, https://doi.org/10.1175/MWR-D-17-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, and A. R. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19, 54055421, https://doi.org/10.1175/JCLI3920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., M. Lengaigne, P. Marchesiello, N. C. Jourdain, E. M. Vincent, J. Lefèvre, F. Chauvin, and J.-F. Royer, 2011: Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Climate Dyn., 38, 301321, https://doi.org/10.1007/s00382-011-1126-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mozer, J. B., and J. A. Zehnder, 1996a: Lee vorticity production by large-scale tropical mountain ranges. Part I: Eastern North Pacific tropical cyclogenesis. J. Atmos. Sci., 53, 521538, https://doi.org/10.1175/1520-0469(1996)053<0521:LVPBLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mozer, J. B., and J. A. Zehnder, 1996b: Lee vorticity production by large-scale tropical mountain ranges. Part II: A mechanism for the production of African waves. J. Atmos. Sci., 53, 539549, https://doi.org/10.1175/1520-0469(1996)053<0539:LVPBLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., and Y. Takayabu, 1985: Global analysis of the lower tropospheric disturbances in the Tropics during the northern summer of the FGGE year. Part II: Regional characteristics of the disturbances. Pure Appl. Geophys., 123, 272292, https://doi.org/10.1007/BF00877023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., R. Saravanan, and P. Chang, 2018: The response of Atlantic tropical cyclones to suppression of African easterly waves. Geophys. Res. Lett., 45, 471479, https://doi.org/10.1002/2017GL076081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., and C. Thorncroft, 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 22662280, https://doi.org/10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, https://doi.org/10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., E. Klinker, and A. Hollingsworth, 1988a: The structure and characteristics of African easterly wave disturbances as determined from the ECMWF operational analysis/forecast system. Meteor. Atmos. Phys., 38, 2233, https://doi.org/10.1007/BF01029944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., A. Hollingsworth, W. A. Heckley, and F. Delsol, 1988b: An evaluation of the performance of the ECMWF operational forecasting system in analyzing and forecasting easterly wave disturbances over Africa and the tropical Atlantic. Mon. Wea. Rev., 116, 824865, https://doi.org/10.1175/1520-0493(1988)116<0824:AEOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396, https://doi.org/10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, R. S., and T. N. Krishnamurti, 2007: Low-level African easterly wave activity and its relation to Atlantic tropical cyclogenesis in 2001. Mon. Wea. Rev., 135, 39503964, https://doi.org/10.1175/2007MWR1996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J. O., A. Aiyyer, J. D. White, and W. Hannah, 2017: Revisiting the connection between African easterly waves and Atlantic tropical cyclogenesis. Geophys. Res. Lett., 44, 587595, https://doi.org/10.1002/2016GL071236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., and N. S. Diffenbaugh, 2014: Projected changes in African easterly wave intensity and track in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 111, 68826887, https://doi.org/10.1073/pnas.1319597111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994: An idealized study of African easterly waves. Part II: A nonlinear view. Quart. J. Roy. Meteor. Soc., 120, 9831015, https://doi.org/10.1002/qj.49712051810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and D. P. Rowell, 1998: Interannual variability of African wave activity in a general circulation model. Int. J. Climatol., 18, 13051323, https://doi.org/10.1002/(SICI)1097-0088(1998100)18:12<1305::AID-JOC281>3.0.CO;2-N.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, https://doi.org/10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, https://doi.org/10.1175/2010JCLI3811.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and C. Fritz, 2012: A first look at the structure of the wave pouch during the 2009 PREDICT–GRIP dry runs over the Atlantic. Mon. Wea. Rev., 140, 11441163, https://doi.org/10.1175/MWR-D-10-05063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M. C., O. Reale, S. D. Schubert, M. J. Suarez, R. D. Koster, and P. J. Pegion, 2009: African easterly jet: Structure and maintenance. J. Climate, 22, 44594480, https://doi.org/10.1175/2009JCLI2584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., F. Q. Zhang, C. A. Davis, and J. H. Sun, 2018: Diurnal evolution and structure of long-lived mesoscale convective vortices along the Mei-yu front over the East China plains. J. Atmos. Sci., 75, 10051025, https://doi.org/10.1175/JAS-D-17-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 39 39 39
Full Text Views 9 9 9
PDF Downloads 9 9 9

On Vortices Initiated over West Africa and Their Impact on North Atlantic Tropical Cyclones

View More View Less
  • 1 Laboratoire de Météorologie Dynamique, CNRS, Paris, France
© Get Permissions
Restricted access

Abstract

Using 38 years of the ERA-Interim dataset, an objective tracking approach is used to analyze the origin, characteristics, and cyclogenesis efficiency (CE) of synoptic-scale vortices initiated over West Africa and the Atlantic Ocean. Vortices initiated over the ocean at a given pressure level often result from a vertical expansion of a “primary” vortex track initiated earlier over West Africa. Low-level (850 hPa) primary vortices are initiated mainly in July near the Hoggar Mountains (24°N, 5°E), while midlevel (700 hPa) primary vortices are initiated mainly in August–September near the Guinea Highlands (10°N, 10°W). The CE of all these vortices is about 10% in July and 30% in August. The average CE is, however, smaller for low-level “Hoggar” vortices because they peak in July when the cyclogenesis potential index of the Atlantic Ocean is weak. Seasonal and interannual modulations of the cyclogenesis is related more to this index than to the number of vortices crossing the West African coast. Cyclogenesis is nearly equally distributed between the coast and 60°W, but the part of the cyclogenesis due to vortices initiated over West Africa decreases from 80% near the coast to about 30% at 60°W. The most probable delay between the vortex vertical expansion and cyclogenesis is 2 days, but it can be up to 10 days. This analysis also confirms previous results, such as the larger CE for vortices extending at low levels over the continent at 10°N, or the delayed and therefore west-shifted cyclogenesis of low-level “Hoggar” vortices.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jean-Philippe Duvel, jpduvel@lmd.ens.fr

Abstract

Using 38 years of the ERA-Interim dataset, an objective tracking approach is used to analyze the origin, characteristics, and cyclogenesis efficiency (CE) of synoptic-scale vortices initiated over West Africa and the Atlantic Ocean. Vortices initiated over the ocean at a given pressure level often result from a vertical expansion of a “primary” vortex track initiated earlier over West Africa. Low-level (850 hPa) primary vortices are initiated mainly in July near the Hoggar Mountains (24°N, 5°E), while midlevel (700 hPa) primary vortices are initiated mainly in August–September near the Guinea Highlands (10°N, 10°W). The CE of all these vortices is about 10% in July and 30% in August. The average CE is, however, smaller for low-level “Hoggar” vortices because they peak in July when the cyclogenesis potential index of the Atlantic Ocean is weak. Seasonal and interannual modulations of the cyclogenesis is related more to this index than to the number of vortices crossing the West African coast. Cyclogenesis is nearly equally distributed between the coast and 60°W, but the part of the cyclogenesis due to vortices initiated over West Africa decreases from 80% near the coast to about 30% at 60°W. The most probable delay between the vortex vertical expansion and cyclogenesis is 2 days, but it can be up to 10 days. This analysis also confirms previous results, such as the larger CE for vortices extending at low levels over the continent at 10°N, or the delayed and therefore west-shifted cyclogenesis of low-level “Hoggar” vortices.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jean-Philippe Duvel, jpduvel@lmd.ens.fr
Save