• Bishop, C. H., and D. Hodyss, 2009: Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus, 61A, 97111, https://doi.org/10.1111/j.1600-0870.2008.00372.x..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. Huang and X. Wang, 2015: A nonvariational consistent hybrid ensemble filter. Mon. Wea. Rev., 143, 50735090, https://doi.org/10.1175/MWR-D-14-00391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., J. Whitaker, and L. Lei, 2017: Gain form of the ensemble transform Kalman filter and its relevance to satellite data assimilation with model space ensemble covariance localization. Mon. Wea. Rev., 145, 45754592, https://doi.org/10.1175/MWR-D-17-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., L. Isaksen, and E. Hólm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 15401559, https://doi.org/10.1002/qj.1899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2012: Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation. Mon. Wea. Rev., 140, 617636, https://doi.org/10.1175/MWR-D-10-05052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and A. Shlyaeva, 2015: Scale-dependent background-error covariance localisation. Tellus, 67A, 28027, https://doi.org/10.3402/tellusa.v67.28027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, https://doi.org/10.1175/2009MWR3157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, https://doi.org/10.1175/2009MWR3158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, J. F., and M. Buehner, 2018: Scale-dependent background error covariance localization: Evaluation in a global deterministic weather forecasting system. Mon. Wea. Rev., 146, 13671381, https://doi.org/10.1175/MWR-D-17-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, J. F., Y. Michel, T. Montmerle, and É. Arbogast, 2019: Improving background error covariances in a 3D ensemble-variational data assimilation system for regional NWP. Mon. Wea. Rev., 147, 135151, https://doi.org/10.1175/MWR-D-18-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caya, A., M. Buehner, and T. Carrieres, 2010: Analysis and forecasting of sea ice conditions with three-dimensional variational data assimilation and a coupled ice–ocean model. J. Atmos. Oceanic Technol., 27, 353369, https://doi.org/10.1175/2009JTECHO701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, https://doi.org/10.1002/qj.2054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalcher, A., and E. Kalnay, 1987: Error growth and predictability in operational ECMWF forecasts. Tellus, 39A, 474491, https://doi.org/10.3402/tellusa.v39i5.11774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., X. Wang, Y. Wang, and J. R. Carley, 2019: Comparing the assimilation of radar reflectivity using the direct GSI-based ensemble–variational (EnVar) and indirect cloud analysis methods in convection-allowing forecasts over the continental United States. Mon. Wea. Rev., 147, 16551678, https://doi.org/10.1175/MWR-D-18-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and M. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci., 71, 24762488, https://doi.org/10.1175/JAS-D-14-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T., J. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., X. Wang, and C. H. Bishop, 2019: The high-rank ensemble transform Kalman filter. Mon. Wea. Rev., 147, 30253043, https://doi.org/10.1175/MWR-D-18-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., X. Wang, D. Kleist, and T. Lei, 2021: A simultaneous multiscale data assimilation using scale-dependent localization in GSI-based hybrid 4DEnVar for NCEP FV3-based GFS. Mon. Wea. Rev., 149, 479501, https://doi.org/10.1175/MWR-D-20-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for mid-latitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J., and X. Wang, 2020: A multiresolution ensemble hybrid 4DEnVar for global numerical prediction. Mon. Wea. Rev., 148, 825847, https://doi.org/10.1175/MWR-D-19-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, https://doi.org/10.1175/MWR-D-12-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, L., J. Whitaker, and C. H. Bishop, 2018: Improving assimilation of radiance observations by implementing model space localization in an ensemble Kalman filter. J. Adv. Model. Earth Syst., 10, 32213232, https://doi.org/10.1029/2018MS001468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2017: Improving ensemble covariances in hybrid variational data assimilation without increasing ensemble size. Quart. J. Roy. Meteor. Soc., 143, 10621072, https://doi.org/10.1002/qj.2990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, Y. Li, M. Tong, and X. Ma, 2016: GSI-based ensemble-variational hybrid data assimilation for HWRF for hurricane initialization and prediction: Impact of various error covariances for airborne radar observation assimilation. Quart. J. Roy. Meteor. Soc., 143, 223239, https://doi.org/10.1002/qj.2914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, M. Tong, and V. Tallapragada, 2017: GSI-based, fully cycled, dual resolution hybrid ensemble-variational data assimilation system for HWRF: System description and experiment with Edouard (2014). Mon. Wea. Rev., 145, 48774898, https://doi.org/10.1175/MWR-D-17-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and K. Kondo, 2013: A multi-scale localization approach to an ensemble Kalman filter. SOLA, 9, 170173, https://doi.org/10.2151/sola.2013-038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2009: A note on the numerical presentation of surface dynamics in quasigeostrophic turbulence: Application to the nonlinear Eady model. J. Atmos. Sci., 66, 10631068, https://doi.org/10.1175/2008JAS2921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, https://doi.org/10.1175/2010MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble–variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP global forecast system. Mon. Wea. Rev., 142, 33033325, https://doi.org/10.1175/MWR-D-13-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive/negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132, 15901605, https://doi.org/10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008a: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part I: Observation system simulation experiment. Mon. Wea. Rev., 136, 51165131, https://doi.org/10.1175/2008MWR2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008b: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 51325147, https://doi.org/10.1175/2008MWR2445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, https://doi.org/10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP global forecast system: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma city tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J., T. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev., 136, 463482, https://doi.org/10.1175/2007MWR2018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, https://doi.org/10.1175/2009MWR2645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 75 75 75
Full Text Views 29 29 29
PDF Downloads 39 39 39

A Multiscale Local Gain Form Ensemble Transform Kalman Filter (MLGETKF)

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • 2 University of Melbourne, Melbourne, Victoria, Australia
  • 3 Naval Research Laboratory, Monterey, California
  • 4 Physical Sciences Laboratory, NOAA/Earth System Research Laboratories, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

A new multiscale, ensemble-based data assimilation (DA) method, multiscale local gain form ensemble transform Kalman filter (MLGETKF), is introduced. MLGETKF allows simultaneous update of multiple scales for both the ensemble mean and perturbations through assimilating all observations at once. MLGETKF performs DA in independent local volumes, which lends the algorithm a high degree of computational scalability. The multiscale analysis is enabled through the rapid creation of many pseudoensemble perturbations via a multiscale ensemble modulation procedure. The Kalman gain that is used to update the raw background ensemble mean and perturbations is based on this modulated ensemble, which intrinsically includes multiscale model space localization. Experiments with a noncycled statistical model show that the full background covariance estimated by MLGETKF more accurately resembles the shape of the true covariance than a scale-unaware localization. The mean analysis from the best-performing MLGETKF is statistically significantly more accurate than the best-performing scale-unaware LGETKF. The accuracy of the MLGETKF analysis is more sensitive to small-scale band localization radius than large-scale band. MLGETKF is further examined in a cycling DA context with a surface quasigeostrophic model. The root-mean-square potential temperature analysis error of the best-performing MLGETKF is 17.2% lower than that of the best-performing LGETKF. MLGETKF reduces analysis errors measured in kinetic energy spectra space by 30%–80% relative to LGETKF with the largest improvement at large scales. MLGETKF deterministic and ensemble mean forecasts are more accurate than LGETKF for full and large scales up to 5–6-day lead time and for small scales up to 3–4-day lead time, gaining ~12 h–1 day of predictability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu

Abstract

A new multiscale, ensemble-based data assimilation (DA) method, multiscale local gain form ensemble transform Kalman filter (MLGETKF), is introduced. MLGETKF allows simultaneous update of multiple scales for both the ensemble mean and perturbations through assimilating all observations at once. MLGETKF performs DA in independent local volumes, which lends the algorithm a high degree of computational scalability. The multiscale analysis is enabled through the rapid creation of many pseudoensemble perturbations via a multiscale ensemble modulation procedure. The Kalman gain that is used to update the raw background ensemble mean and perturbations is based on this modulated ensemble, which intrinsically includes multiscale model space localization. Experiments with a noncycled statistical model show that the full background covariance estimated by MLGETKF more accurately resembles the shape of the true covariance than a scale-unaware localization. The mean analysis from the best-performing MLGETKF is statistically significantly more accurate than the best-performing scale-unaware LGETKF. The accuracy of the MLGETKF analysis is more sensitive to small-scale band localization radius than large-scale band. MLGETKF is further examined in a cycling DA context with a surface quasigeostrophic model. The root-mean-square potential temperature analysis error of the best-performing MLGETKF is 17.2% lower than that of the best-performing LGETKF. MLGETKF reduces analysis errors measured in kinetic energy spectra space by 30%–80% relative to LGETKF with the largest improvement at large scales. MLGETKF deterministic and ensemble mean forecasts are more accurate than LGETKF for full and large scales up to 5–6-day lead time and for small scales up to 3–4-day lead time, gaining ~12 h–1 day of predictability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu
Save