• Aberson, S. D., and J. B. Halverson, 2006: Kelvin–Helmholtz billows in the eyewall of Hurricane Erin. Mon. Wea. Rev., 134, 10361038, https://doi.org/10.1175/MWR3094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., M. T. Montgomery, M. M. Bell, and M. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part II: Extreme localized wind. Bull. Amer. Meteor. Soc., 87, 13491354, https://doi.org/10.1175/BAMS-87-10-1349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., J. A. Zhang, K. Nuñez Ocasio, S. D. Aberson, J. A. Zhang, and K. N. Ocasio, 2017: An extreme event in the eyewall of Hurricane Felix on 2 September 2007. Mon. Wea. Rev., 145, 20832092, https://doi.org/10.1175/MWR-D-16-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, A. A., M. I. Biggerstaff, P. G. D. Carrie, J. L. Schroeder, B. D. Hirth, and S. M. Waugh, 2019: Near-surface maximum winds during the landfall of Hurricane Harvey. Geophys. Res. Lett., 46, 973982, https://doi.org/10.1029/2018GL080013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category-5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046, https://doi.org/10.1175/2007MWR1858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and F. D. Marks, 1991: The structure of an eyewall meso-vortex in Hurricane Hugo (1989). Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Metor. Soc., 579–582.

  • Bluestein, H. B., and F. D. Marks, 1987: On the structure of the eyewall of Hurricane Diana (1984): Comparison of radar and visual characteristics. Mon. Wea. Rev., 115, 25422552, https://doi.org/10.1175/1520-0493(1987)115<2542:OTSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 15731592, https://doi.org/10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 1942, https://doi.org/10.1175/JAS3598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58, 21282145, https://doi.org/10.1175/1520-0469(2001)058<2128:SBIASH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091, https://doi.org/10.1175/MWR3250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of Hurricane Ivan (2004). Mon. Wea. Rev., 137, 20812104, https://doi.org/10.1175/2009MWR2753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227, https://doi.org/10.1175/MWR-2849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández-Cabán, P. L., and et al. , 2019: Observing Hurricane Harvey’s eyewall at landfall. Bull. Amer. Meteor. Soc., 100, 759775, https://doi.org/10.1175/BAMS-D-17-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403, https://doi.org/10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., and M. T. Montgomery, 2006: Rapid scan views of convectively generated mesovortices in sheared Tropical Cyclone Gustav (2002). Wea. Forecasting, 21, 10411050, https://doi.org/10.1175/WAF950.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., B. D. McNoldy, and W. H. Schubert, 2012: Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Wea. Rev., 140, 40664077, https://doi.org/10.1175/MWR-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, J., T. Oizumi, and H. Niino, 2017: Near-surface coherent structures explored by large eddy simulation of entire tropical cyclones. Sci. Rep., 7, 3798, https://doi.org/10.1038/s41598-017-03848-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature Hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 12871311, https://doi.org/10.1175/1520-0469(1984)041<1287:MACSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., and J. Wurman, 2014: Finescale dual-Doppler analysis of hurricane boundary layer structures in Hurricane Frances (2004) at landfall. Mon. Wea. Rev., 142, 18741891, https://doi.org/10.1175/MWR-D-13-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, F. J. Masters, and P. Robinson, 2013: Mapping of near-surface winds in Hurricane Rita using finescale radar, anemometer, and land-use data. Mon. Wea. Rev., 141, 43374349, https://doi.org/10.1175/MWR-D-12-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, https://doi.org/10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. Schubert, 2004: Mesovortices in Hurricane Isabel. Bull. Amer. Meteor. Soc., 85, 151153, https://doi.org/10.1175/BAMS-85-2-151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., B. McNoldy, and W. Schubert, 2002: Vortical swirls in hurricane eye clouds. Mon. Wea. Rev., 130, 31443149, https://doi.org/10.1175/1520-0493(2002)130<3144:VSIHEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., R. T. Williams, and J.-H. Chen, 1999: A possible mechanism for the eye rotation of Typhoon Herb. J. Atmos. Sci., 56, 16591673, https://doi.org/10.1175/1520-0469(1999)056<1659:APMFTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, B., and H. Hawkins, 1982: Polygonal eye walls and rainbands in hurricanes. Bull. Amer. Meteor. Soc., 63, 12941301, https://doi.org/10.1175/1520-0477(1982)063<1294:PEWARI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 12371259, https://doi.org/10.1175/2007MWR2073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashiko, W., 2005: Polygonal eyewall and mesovortices structure in a numerically simulated typhoon Rusa. SOLA, 1, 2932, https://doi.org/10.2151/sola.2005-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashiko, W., H. Niino, and T. Kato, 2009: Numerical simulation of tornadogenesis in an outer-rainband minisupercell of Typhoon Shanshan on 17 September 2006. Mon. Wea. Rev., 137, 42384260, https://doi.org/10.1175/2009MWR2959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., D. E. Buechler, S. J. Goodman, and M. Cammarata, 2004: Doppler radar and lightning network observations of a severe outbreak of tropical cyclone tornadoes. Mon. Wea. Rev., 132, 17471763, https://doi.org/10.1175/1520-0493(2004)132<1747:DRALNO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2015: A triggering mechanism for rapid intensification of tropical cyclones. J. Atmos. Sci., 72, 26662681, https://doi.org/10.1175/JAS-D-14-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, https://doi.org/10.1002/qj.49712353810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., V. A. Vladimirov, and P. V. Denissenko, 2002: An experimental study on hurricane mesovortices. J. Fluid Mech., 471, 132, https://doi.org/10.1017/S0022112002001647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. M. Bell, S. Aberson, and M. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 13351348, https://doi.org/10.1175/BAMS-87-10-1335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1986: The structure of polygonal eye of a typhoon. J. Meteor. Soc. Japan, 64, 913921, https://doi.org/10.2151/jmsj1965.64.6_913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2020: An investigation of spiral gravity waves radiating from tropical cyclones using a linear, nonhydrostatic model. J. Atmos. Sci., 77, 17331759, https://doi.org/10.1175/JAS-D-19-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 29893020, https://doi.org/10.1175/1520-0469(2002)059<2989:NTDPTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, https://doi.org/10.1175/2009MWR2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and E. W. Uhlhorn, 2014: On the limits of estimating the maximum wind speeds in hurricanes. Mon. Wea. Rev., 142, 28142837, https://doi.org/10.1175/MWR-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371, https://doi.org/10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks, and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, https://doi.org/10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and et al. , 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bull. Amer. Meteor. Soc., 98, 20912112, https://doi.org/10.1175/BAMS-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, U., and T. Horinouchi, 2018: Reintensification and eyewall formation in strong shear: A case study of Typhoon Noul (2015). Mon. Wea. Rev., 146, 27992817, https://doi.org/10.1175/MWR-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, U., M. Sawada, and H. Yamada, 2018: Doppler radar analysis of the rapid intensification of Typhoon Goni (2015) after eyewall replacement. J. Atmos. Sci., 75, 143162, https://doi.org/10.1175/JAS-D-17-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., G. H. Bryan, and S. D. Aberson, 2016: Extreme low-level updrafts and wind speeds measured by dropsondes in tropical cyclones. Mon. Wea. Rev., 144, 21772204, https://doi.org/10.1175/MWR-D-15-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and P. G. Black, 1994: Damage survey of Hurricane Andrew and its relationship to the eyewall. Bull. Amer. Meteor. Soc., 75, 189200, https://doi.org/10.1175/1520-0477(1994)075<0189:DSOHAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 12131238, https://doi.org/10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262, https://doi.org/10.1175/1520-0469(2002)059<1239:VRWIAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 11581181, https://doi.org/10.1175/2007JAS2426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H., and P. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77, 543549, https://doi.org/10.1175/1520-0477(1996)077<0543:HAIFDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wingo, S. M., and K. R. Knupp, 2016: Kinematic structure of mesovortices in the eyewall of Hurricane Ike (2008) derived from ground-based dual-Doppler analyses. Mon. Wea. Rev., 144, 42454263, https://doi.org/10.1175/MWR-D-16-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and J. Winslow, 1998: Intense sub-kilometerscale boundary layer rolls observed in Hurricane Fran. Science, 280, 555557, https://doi.org/10.1126/science.280.5363.555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosiba, 2018: The role of small-scale vortices in enhancing surface winds and damage in Hurricane Harvey. Mon. Wea. Rev., 146, 713722, https://doi.org/10.1175/MWR-D-17-0327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128, 37723788, https://doi.org/10.1175/1520-0493(2001)129<3772:AMNSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 94 94 84
Full Text Views 34 34 23
PDF Downloads 47 47 32

Observed Near-Surface Wind Structure in the Inner Core of Typhoon Goni (2015)

View More View Less
  • 1 a Meteorological Research Institute, Tsukuba, Japan
© Get Permissions
Restricted access

Abstract

Very strong Typhoon Goni (2015) passed over the Yaeyama Islands in southwestern Japan during the rapid intensification stage on 23 August. Surface data collected by the dense network of weather stations as well as Doppler radar observations over the islands revealed a finescale structure in the inner core of the typhoon near the surface. Goni had a clear eye surrounded by a square-shaped eyewall with intense convection. The surface observations revealed that several vortices with a diameter of ~7–10 km accompanied by a pressure deficit were present inside the eye. From the Doppler velocity field, mesovortices with diameters of approximately 10 km were found at the apexes of the square-shaped eyewall. These mesovortices and the inner rainbands emanating outward from the apexes of the polygonal eyewall generally exhibited features typical of vortex Rossby waves. The mesovortices were accompanied by a pressure deficit at the surface and enhanced surface winds. The data also indicated the first observational evidence of near-surface mixing between the eye and eyewall through the mesovortices, that is, the transport of high equivalent potential temperature in the eye toward the eyewall. The radar data revealed that many radar-reflectivity filaments that had a pleated shape with lengths of a few kilometers extended perpendicularly from the inner edge of the eyewall at low levels. The filaments associated with wind perturbations at low levels caused significant wind gusts accompanied by sudden pressure drops and shifts in wind direction at the surface.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wataru Mashiko, wmashiko@mri-jma.go.jp

Abstract

Very strong Typhoon Goni (2015) passed over the Yaeyama Islands in southwestern Japan during the rapid intensification stage on 23 August. Surface data collected by the dense network of weather stations as well as Doppler radar observations over the islands revealed a finescale structure in the inner core of the typhoon near the surface. Goni had a clear eye surrounded by a square-shaped eyewall with intense convection. The surface observations revealed that several vortices with a diameter of ~7–10 km accompanied by a pressure deficit were present inside the eye. From the Doppler velocity field, mesovortices with diameters of approximately 10 km were found at the apexes of the square-shaped eyewall. These mesovortices and the inner rainbands emanating outward from the apexes of the polygonal eyewall generally exhibited features typical of vortex Rossby waves. The mesovortices were accompanied by a pressure deficit at the surface and enhanced surface winds. The data also indicated the first observational evidence of near-surface mixing between the eye and eyewall through the mesovortices, that is, the transport of high equivalent potential temperature in the eye toward the eyewall. The radar data revealed that many radar-reflectivity filaments that had a pleated shape with lengths of a few kilometers extended perpendicularly from the inner edge of the eyewall at low levels. The filaments associated with wind perturbations at low levels caused significant wind gusts accompanied by sudden pressure drops and shifts in wind direction at the surface.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wataru Mashiko, wmashiko@mri-jma.go.jp
Save