• Astropy Collaboration, 2013: Astropy: A community Python package for astronomy. Astron. Astrophys., 558, A33, https://doi.org/10.1051/0004-6361/201322068.

    • Search Google Scholar
    • Export Citation
  • Astropy Collaboration, 2018: The Astropy Project: Building an open-science project and status of the v2.0 core package. Astron. J., 156, 123, https://doi.org/10.3847/1538-3881/aabc4f.

    • Search Google Scholar
    • Export Citation
  • Berson, F., D. Reid, and A. Troup, 1957: The summer cool change of South-Eastern Australia. Tech. Pap. 8–9, 48 pp.

  • Blake, B. T., D. B. Parsons, K. R. Haghi, and S. G. Castleberry, 2017: The structure, evolution, and dynamics of a nocturnal convective system simulated using the WRF-ARW model. Mon. Wea. Rev., 145, 31793201, https://doi.org/10.1175/MWR-D-16-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., G. T. Marx, and M. H. Jain, 1987: Formation of mesoscale lines of precipitation: Nonsevere squall lines in Oklahoma during the spring. Mon. Wea. Rev., 115, 27192727, https://doi.org/10.1175/1520-0493(1987)115<2719:FOMLOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and S. Pfahl, 2013: The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos., 118, 10 79110 801, https://doi.org/10.1002/jgrd.50852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm identification, tracking, analysis, and nowcasting––A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A., and et al. , 2019: Use of polarimetric radar measurements to constrain simulated convective cell evolution: A pilot study with Lagrangian tracking. Atmos. Meas. Tech., 12, 29793000, https://doi.org/10.5194/amt-12-2979-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabella, M., and R. Notarpietro, 2002: Ground clutter characterization and elimination in mountainous terrain. Proc. Second European Conf. on Radar Meteorology (ERAD), Delft, Netherlands, ERAD, 305–311.

  • Garratt, J., 1988: Summertime cold fronts in southeast Australia—Behavior and low-level structure of main frontal types. Mon. Wea. Rev., 116, 636649, https://doi.org/10.1175/1520-0493(1988)116<0636:SCFISA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J., W. Physick, R. Smith, and A. Troup, 1985: The Australian summertime cool change. Part II: Mesoscale aspects. Mon. Wea. Rev., 113, 202223, https://doi.org/10.1175/1520-0493(1985)113<0202:TASCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., 1998: Mesoscale convective systems in the southeast United States during 1994–95: A survey. Wea. Forecasting, 13, 860869, https://doi.org/10.1175/1520-0434(1998)013<0860:MCSITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., and W. S. Ashley, 2019: A radar-based climatology of mesoscale convective systems in the United States. J. Climate, 32, 15911606, https://doi.org/10.1175/JCLI-D-18-0559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM radar toolkit (Py-ART), a library for working with weather radar data in the python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, S. M., and R. S. Schumacher, 2020: Analysis of back-building convection in simulations with a strong low-level stable layer. Mon. Wea. Rev., 148, 37733797, https://doi.org/10.1175/MWR-D-19-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocker, J. E., and J. B. Basara, 2008: A 10-year spatial climatology of squall line storms across Oklahoma. Int. J. Climatol., 28, 765775, https://doi.org/10.1002/joc.1579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, https://doi.org/10.1175/JCLI3570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., W. R. Cotton, and R. L. McAnelly, 2003: Satellite and radar survey of mesoscale convective system development. Mon. Wea. Rev., 131, 24282449, https://doi.org/10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. A., W. Wang, and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248, https://doi.org/10.22499/2.5804.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keene, K. M., and R. S. Schumacher, 2013: The bow and arrow mesoscale convective structure. Mon. Wea. Rev., 141, 16481672, https://doi.org/10.1175/MWR-D-12-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, V. V., A. Protat, P. T. May, C. Jakob, G. Penide, S. Kumar, and L. Davies, 2013: On the effects of large-scale environment and surface types on convective cloud characteristics over Darwin, Australia. Mon. Wea. Rev., 141, 13581374, https://doi.org/10.1175/MWR-D-12-00160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. Hondl, C. K. Potvin, and D. Preignitz, 2013: An improved method for estimating radar echo-top height. Wea. Forecasting, 28, 481488, https://doi.org/10.1175/WAF-D-12-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landvogt, P. K., J. A. Bye, and T. P. Lane, 2008: An investigation of recent orographic precipitation events in northeast Victoria. Aust. Meteor. Mag., 57, 235247.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2017: Shear-parallel mesoscale convective systems in a moist low-inhibition mei-yu front environment. J. Atmos. Sci., 74, 42134228, https://doi.org/10.1175/JAS-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and Y. Zhang, 2012: On the squall lines preceding landfalling tropical cyclones in China. Mon. Wea. Rev., 140, 445470, https://doi.org/10.1175/MWR-D-10-05080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., D. Yan, and Y. Zhang, 2013: General features of squall lines in east China. Mon. Wea. Rev., 141, 16291647, https://doi.org/10.1175/MWR-D-12-00208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muir, L. C., and M. J. Reeder, 2010: Idealized modelling of landfalling cold fronts. Quart. J. Roy. Meteor. Soc., 136, 21472161, https://doi.org/10.1002/qj.692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and M.-T. Liou, 1980: The structure of a midlatitude squall line: A case study. J. Atmos. Sci., 37, 553567, https://doi.org/10.1175/1520-0469(1980)037<0553:TSOAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., A. J. Dowdy, P. van Rensch, I. Rudeva, J. L. Catto, and P. Hope, 2020: The contributions of fronts, lows and thunderstorms to southern Australian rainfall. Climate Dyn., 55, 14891505, https://doi.org/10.1007/s00382-020-05338-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., A. J. Dowdy, and P. Hope, 2021: The differing role of weather systems in southern Australian rainfall between 1979–1996 and 1997–2015. Climate Dyn., 56, 114, https://doi.org/10.1007/s00382-020-05588-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peter, J. R., M. J. Manton, R. J. Potts, P. T. May, S. M. Collis, and L. Wilson, 2015: Radar-derived statistics of convective storms in southeast Queensland. J. Appl. Meteor. Climatol., 54, 19852008, https://doi.org/10.1175/JAMC-D-13-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2015: The simulated structure and evolution of a quasi-idealized warm season convective system with a training convective line. J. Atmos. Sci., 72, 19872010, https://doi.org/10.1175/JAS-D-14-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Physick, W., W. Downey, A. Troup, B. Ryan, and P. Meighen, 1985: Mesoscale observations of a prefrontal squall line. Mon. Wea. Rev., 113, 19581969, https://doi.org/10.1175/1520-0493(1985)113<1958:MOOAPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pook, M. J., P. C. McIntosh, and G. A. Meyers, 2006: The synoptic decomposition of cool-season rainfall in the southeastern Australian cropping region. J. Appl. Meteor. Climatol., 45, 11561170, https://doi.org/10.1175/JAM2394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potts, R., T. Keenan, and P. T. May, 2000: Radar characteristics of storms in the Sydney area. Mon. Wea. Rev., 128, 33083319, https://doi.org/10.1175/1520-0493(2000)128<3308:RCOSIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K., and R. Houze Jr., 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, https://doi.org/10.1175/MWR-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and R. K. Smith, 1987: A study of frontal dynamics with application to the Australian summertime “cool change.” J. Atmos. Sci., 44, 687705, https://doi.org/10.1175/1520-0469(1987)044<0687:ASOFDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, K. J., I. Simmonds, C. L. Vincent, and A. D. King, 2019: The Australian northwest cloudband: Climatology, mechanisms, and association with precipitation. J. Climate, 32, 66656684, https://doi.org/10.1175/JCLI-D-19-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribeiro, B. Z., and M. E. Seluchi, 2019: A climatology of quasi-linear convective systems and associated synoptic-scale environments in southern Brazil. Int. J. Climatol., 39, 857877, https://doi.org/10.1002/joc.5847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, B., and K. Wilson, 1985: The Australian summertime cool change. Part III: Subsynoptic and mesoscale model. Mon. Wea. Rev., 113, 224240, https://doi.org/10.1175/1520-0493(1985)113<0224:TASCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, B., K. Wilson, J. Garratt, and R. Smith, 1985: Cold Fronts Research Programme: Progress, future plans, and research directions. Bull. Amer. Meteor. Soc., 66, 11161122, https://doi.org/10.1175/1520-0477(1985)066<1116:CFRPPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, B., K. Wilson, and E. Zipser, 1989: Modification of the thermodynamic structure of the lower troposphere by the evaporation of precipitation ahead of a cold front. Mon. Wea. Rev., 117, 138153, https://doi.org/10.1175/1520-0493(1989)117<0138:MOTTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2009: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci., 66, 15431568, https://doi.org/10.1175/2008JAS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2017: Heavy Rainfall and Flash Flooding. Oxford University Press, https://doi.org/10.1093/acrefore/9780199389407.013.132.

    • Crossref
    • Export Citation
  • Skamarock, W. C., and et al. , 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

    • Crossref
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. J. Reeder, 1988: On the movement and low-level structure of cold fronts. Mon. Wea. Rev., 116, 19271944, https://doi.org/10.1175/1520-0493(1988)116<1927:OTMALL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soderholm, J., A. Protat, and C. Jakob, 2019: Australian operational weather radar dataset. National Computing Infrastructure, accessed 2 March 2020, https://doi.org/10.25914/5cb686a8d9450.

    • Crossref
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, M. A., 1970: Use of the Kolmogorov–Smirnov, Cramer–Von Mises and related statistics without extensive tables. J. Roy. Stat. Soc., 32B, 115122, https://doi.org/10.1111/j.2517-6161.1970.tb00821.x.

    • Search Google Scholar
    • Export Citation
  • Warren, R. A., A. Protat, S. T. Siems, H. A. Ramsay, V. Louf, M. J. Manton, and T. A. Kane, 2018: Calibrating ground-based radars against TRMM and GPM. J. Atmos. Oceanic Technol., 35, 323346, https://doi.org/10.1175/JTECH-D-17-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., H. A. Ramsay, S. T. Siems, M. J. Manton, J. R. Peter, A. Protat, and A. Pillalamarri, 2020: Radar-based climatology of damaging hailstorms in Brisbane and Sydney, Australia. Quart. J. Roy. Meteor. Soc., 146, 505530, https://doi.org/10.1002/qj.3693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., C. Jakob, S. M. Hitchcock, and B. A. White, 2021: Heavy versus extreme rainfall events in southeast Australia. Quart. J. Roy. Meteor. Soc., 147, 32013226, https://doi.org/10.1002/qj.4124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wilson, K., and H. Stern, 1985: The Australian summertime cool change. Part I: Synoptic and subsynoptic scale aspects. Mon. Wea. Rev., 113, 177201, https://doi.org/10.1175/1520-0493(1985)113<0177:TASCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, W., 1988: The low latitude influence on winter rainfall in Victoria, south-eastern Australia––I. Climatological aspects. J. Climatol., 8, 437462, https://doi.org/10.1002/joc.3370080502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, W., 1989: A synoptic climatological classification of winter precipitation in Victoria. Aust. Meteor. Mag., 37, 217229.

  • Zheng, M., E. K. M. Chang, and B. A. Colle, 2013: Ensemble sensitivity tools for assessing extratropical cyclone intensity and track predictability. Wea. Forecasting, 28, 11331156, https://doi.org/10.1175/WAF-D-12-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 118 118 118
Full Text Views 24 24 24
PDF Downloads 32 32 32

Linear Rainfall Features and Their Association with Rainfall Extremes near Melbourne, Australia

View More View Less
  • 1 a School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Victoria, Australia
  • | 2 b ARC Centre of Excellence for Climate Extremes, Melbourne, Victoria, Australia
  • | 3 c School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
  • | 4 d Australian Bureau of Meteorology, Melbourne, Victoria, Australia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Linear precipitation systems are a prominent contributor to rainfall over Melbourne, Australia, and the surrounding region. These systems are often convective in nature, frequently associated with cold fronts, and in some cases can lead to significant rainfall and flash flooding. Various types of linearly organized systems (e.g., squall lines, quasi-linear convective systems) have been the subject of much research in the United States and elsewhere, but thus far relatively little analysis has been done on linear systems in Australia. To begin to understand rainfall extremes and how they may change in this region in the future, it is useful to explore the contribution of these types of systems and the characteristics that define them. To this end, we have examined the recently developed Australian Radar Archive (AURA), identifying objects that meet a specific set of relevant criteria, and used multiple methods to identify heavy and extreme daily rainfall. We found that on average, days with linear systems contribute over half of the total rainfall and 70%–85% of heavy/extreme rainfall in the Melbourne region. The linear systems that occur on heavy rainfall days tend to be larger, slower-moving, and longer-lived, while those on extreme rainfall days also tend to be more intense and have a greater degree of southward propagation than linear systems on other days.

Warren’s current affiliation: Australian Bureau of Meteorology, Melbourne, Victoria, Australia.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stacey Hitchcock, Stacey.Hitchcock@unimelb.edu.au

Abstract

Linear precipitation systems are a prominent contributor to rainfall over Melbourne, Australia, and the surrounding region. These systems are often convective in nature, frequently associated with cold fronts, and in some cases can lead to significant rainfall and flash flooding. Various types of linearly organized systems (e.g., squall lines, quasi-linear convective systems) have been the subject of much research in the United States and elsewhere, but thus far relatively little analysis has been done on linear systems in Australia. To begin to understand rainfall extremes and how they may change in this region in the future, it is useful to explore the contribution of these types of systems and the characteristics that define them. To this end, we have examined the recently developed Australian Radar Archive (AURA), identifying objects that meet a specific set of relevant criteria, and used multiple methods to identify heavy and extreme daily rainfall. We found that on average, days with linear systems contribute over half of the total rainfall and 70%–85% of heavy/extreme rainfall in the Melbourne region. The linear systems that occur on heavy rainfall days tend to be larger, slower-moving, and longer-lived, while those on extreme rainfall days also tend to be more intense and have a greater degree of southward propagation than linear systems on other days.

Warren’s current affiliation: Australian Bureau of Meteorology, Melbourne, Victoria, Australia.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stacey Hitchcock, Stacey.Hitchcock@unimelb.edu.au
Save