All Time Past Year Past 30 Days
Abstract Views 34 34 0
Full Text Views 130 130 51
PDF Downloads 128 128 48

Using Stochastically Perturbed Parameterizations to Represent Model Uncertainty, Part I: Implementation and Parameter Sensitivity

View More View Less
  • 1 aAtmospheric Numerical Weather Prediction Research Section, Environment and Climate Change Canada, Dorval, QC, Canada
  • | 2 bData Assimilation Research Section, Environment and Climate Change Canada, Dorval, QC, Canada
Open access

Abstract

Accurately representing model-based sources of uncertainty is essential for the development of reliable ensemble prediction systems for NWP applications. Uncertainties in discretizations, algorithmic approximations, and diabatic and unresolved processes combine to influence forecast s kill i n a fl ow-dependent wa y. An em erging ap proach de signed to pr ovide a process-level representation of these potential error sources, stochastically perturbed parameterizations (SPP), is introduced into the Canadian operational Global Ensemble Prediction System. This implementation extends the SPP technique beyond its typical application to free parameters in the physics suite by sampling uncertainty both within the dynamical core and at the formulation level using “error models” when multiple physical closures are available. Because SPP perturbs components within the model, internal consistency is ensured and conservation properties are not affected. The full SPP scheme is shown to increase ensemble spread to keep pace with error growth on a global scale. The sensitivity of the ensemble to each independently perturbed “element” is then assessed, with those responsible for the bulk of the response analyzed in more detail. Perturbations to surface exchange coefficients and the turbulent mixing length have a leading impact on near-surface statistics. Aloft, a tropically focused error model representing uncertainty in the advection scheme is found to initiate growing perturbations on the subtropical jet that lead to forecast improvements at higher latitudes. The results of Part I suggest that SPP has the potential to serve as a reliable representation of model uncertainty for ensemble NWP applications.

Corresponding author: Ron McTaggart-Cowan, ron.mctaggart-cowan@ec.gc.ca

Abstract

Accurately representing model-based sources of uncertainty is essential for the development of reliable ensemble prediction systems for NWP applications. Uncertainties in discretizations, algorithmic approximations, and diabatic and unresolved processes combine to influence forecast s kill i n a fl ow-dependent wa y. An em erging ap proach de signed to pr ovide a process-level representation of these potential error sources, stochastically perturbed parameterizations (SPP), is introduced into the Canadian operational Global Ensemble Prediction System. This implementation extends the SPP technique beyond its typical application to free parameters in the physics suite by sampling uncertainty both within the dynamical core and at the formulation level using “error models” when multiple physical closures are available. Because SPP perturbs components within the model, internal consistency is ensured and conservation properties are not affected. The full SPP scheme is shown to increase ensemble spread to keep pace with error growth on a global scale. The sensitivity of the ensemble to each independently perturbed “element” is then assessed, with those responsible for the bulk of the response analyzed in more detail. Perturbations to surface exchange coefficients and the turbulent mixing length have a leading impact on near-surface statistics. Aloft, a tropically focused error model representing uncertainty in the advection scheme is found to initiate growing perturbations on the subtropical jet that lead to forecast improvements at higher latitudes. The results of Part I suggest that SPP has the potential to serve as a reliable representation of model uncertainty for ensemble NWP applications.

Corresponding author: Ron McTaggart-Cowan, ron.mctaggart-cowan@ec.gc.ca
Save