Observations of Hurricane-Generated, Near-Inertial Slope Modes

D. Y. Lai Applied Physics Laboratory and School of Oceanography, College of Ocean and Fishery Sciences, University of Washington, Seattle, WA 98105

Search for other papers by D. Y. Lai in
Current site
Google Scholar
PubMed
Close
and
T. B. Sanford Applied Physics Laboratory and School of Oceanography, College of Ocean and Fishery Sciences, University of Washington, Seattle, WA 98105

Search for other papers by T. B. Sanford in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Velocity Profiles and current meter measurements taken near Site D(39°10′N, 70°00′W) on the continental rise south of New England are used to study the variability of the near-inertial wave field along a sloping bottom. While the typical vertical scales of the waves are on the order of 100 m, some energetic downward propagating near-inertial features are observed with unusually large vertical scales, on the order of the ocean depth. Comparison with an internal wave model on a linear bottom slope shows that these energetic waves are dominated by the lowest three downward and seaward printing dynamical “slope” modes. The lowest mode arrives first at Site D from the north, the higher modes follow several days later.

The observed scales and propagation directions suggest that the energetic near-inertial waves were generated by a hurricane and then reflected at the steep continental slope to the north of Site D. The low-order, flat-bottom modes that usually dominate the far-field response of a hurricane are changed by the sloping bottom into “slope” modes, which then propagate toward deeper water. Energy intensification of these modes towards the bottom suggests that sloping bottoms may play a significant role in the near-inertial wave field below the main thermocline.

Abstract

Velocity Profiles and current meter measurements taken near Site D(39°10′N, 70°00′W) on the continental rise south of New England are used to study the variability of the near-inertial wave field along a sloping bottom. While the typical vertical scales of the waves are on the order of 100 m, some energetic downward propagating near-inertial features are observed with unusually large vertical scales, on the order of the ocean depth. Comparison with an internal wave model on a linear bottom slope shows that these energetic waves are dominated by the lowest three downward and seaward printing dynamical “slope” modes. The lowest mode arrives first at Site D from the north, the higher modes follow several days later.

The observed scales and propagation directions suggest that the energetic near-inertial waves were generated by a hurricane and then reflected at the steep continental slope to the north of Site D. The low-order, flat-bottom modes that usually dominate the far-field response of a hurricane are changed by the sloping bottom into “slope” modes, which then propagate toward deeper water. Energy intensification of these modes towards the bottom suggests that sloping bottoms may play a significant role in the near-inertial wave field below the main thermocline.

Save