The Meridional and Seasonal Structures of the Mixed-Layer Depth and its Diurnal Amplitude Observed during the Hawaii-to-Tahiti Shuttle Experiment

View More View Less
  • 1 Department of Oceanography and Hawaii Institute of Geophysics, University of Hawaii at Manoa, Honolulu, Hawaii
© Get Permissions
Full access

Abstract

We describe the meridional and seasonal structures of daily mean mixed-layer depth and its diurnal amplitude and their relation to atmospheric fluxes by compositing mixed-layer depth estimates derived from density observations. The diurnal mean mixed-layer depth shows a ridge at the equator, troughs, which vary seasonally in intensity, at 10° to 15°N and 5° to 10°S, and a trough appearing just north of the equator in the second half of the year. This is in contrast to the ridge-trough structure of the top of the main thermocline, which reflects the dynamic topography associated with the equatorial current system. The diurnal amplitude is significantly different from zero for most latitudes year-round, indicating that the diurnal cycle of mixed-layer depth is a widespread phenomenon. For sufficiently strong heating, both the mixed-layer depth and its diurnal amplitude are significantly correlated with Monin-Obukhov length scales based on the mean net heat flux, mean wind stress, and mean shortwave radiation. This suggests a possible parameterization of the mixed-layer depth and diurnal amplitude in terms of the mean atmospheric fluxes for meridional scales of a few degrees and seasonal time scales.

Abstract

We describe the meridional and seasonal structures of daily mean mixed-layer depth and its diurnal amplitude and their relation to atmospheric fluxes by compositing mixed-layer depth estimates derived from density observations. The diurnal mean mixed-layer depth shows a ridge at the equator, troughs, which vary seasonally in intensity, at 10° to 15°N and 5° to 10°S, and a trough appearing just north of the equator in the second half of the year. This is in contrast to the ridge-trough structure of the top of the main thermocline, which reflects the dynamic topography associated with the equatorial current system. The diurnal amplitude is significantly different from zero for most latitudes year-round, indicating that the diurnal cycle of mixed-layer depth is a widespread phenomenon. For sufficiently strong heating, both the mixed-layer depth and its diurnal amplitude are significantly correlated with Monin-Obukhov length scales based on the mean net heat flux, mean wind stress, and mean shortwave radiation. This suggests a possible parameterization of the mixed-layer depth and diurnal amplitude in terms of the mean atmospheric fluxes for meridional scales of a few degrees and seasonal time scales.

Save