All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 186 41 2
PDF Downloads 41 16 1

Observations of Temperature Microstructure in NATRE

Jeffrey T. ShermanScripps institution of Oceanography, La Joila, California

Search for other papers by Jeffrey T. Sherman in
Current site
Google Scholar
PubMed
Close
and
Russ E. DavisScripps institution of Oceanography, La Joila, California

Search for other papers by Russ E. Davis in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

A new autonomous instrument collected 76 profiles of temperature microstructure over a ten-day period in the eastern subtropical North Atlantic as part of the North Atlantic Tracer Release Experiment. The data between 200-m and 350-m depth was used to determine the mean rate of temperature variance dissipation 〈χ〉. The estimated diapycnal diffusivity is Ky = 1.4×10−5 m2 s−1. The distribution of χ is approximately lognormal, suggesting that the 95% confidence limits on 〈χ〉 are ±4%. This uncertainty is less than that caused by the imperfectly known probe response, possible noise spikes on the probes, and variability in the degree of microstructure anisotropy; the latter two effects were estimated from a pair of closely spaced probes. Each of these uncertainties is about ±15%. Statistically significant low-frequency variability of χ is observed with 〈χ〉 decreasing by a factor of 2 between the first and second half of the observation. This low-frequency variability is likely the largest cause of error in estimating a seasonally averaged diapycnal diffusivity.

Abstract

A new autonomous instrument collected 76 profiles of temperature microstructure over a ten-day period in the eastern subtropical North Atlantic as part of the North Atlantic Tracer Release Experiment. The data between 200-m and 350-m depth was used to determine the mean rate of temperature variance dissipation 〈χ〉. The estimated diapycnal diffusivity is Ky = 1.4×10−5 m2 s−1. The distribution of χ is approximately lognormal, suggesting that the 95% confidence limits on 〈χ〉 are ±4%. This uncertainty is less than that caused by the imperfectly known probe response, possible noise spikes on the probes, and variability in the degree of microstructure anisotropy; the latter two effects were estimated from a pair of closely spaced probes. Each of these uncertainties is about ±15%. Statistically significant low-frequency variability of χ is observed with 〈χ〉 decreasing by a factor of 2 between the first and second half of the observation. This low-frequency variability is likely the largest cause of error in estimating a seasonally averaged diapycnal diffusivity.

Save