• Adcroft, A. J., C. N. Hill, and J. C. Marshall, 1999: A new treatment of the Coriolis terms in C-grid models at both high and low resolutions. Mon. Wea. Rev., 127, 19281936, https://doi.org/10.1175/1520-0493(1999)127<1928:ANTOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., B. K. Arbic, M. C. Buijsman, J. G. Richman, J. F. Shriver, and A. J. Wallcraft, 2015: Indirect evidence for substantial damping of low-mode internal tides in the open ocean. J. Geophys. Res. Oceans, 120, 60576071, https://doi.org/10.1002/2015JC010998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., S. Manabe, and R. C. Pacanowski, 1975: A global ocean-atmosphere climate model. Part II. The ocean circulation. J. Phys. Oceanogr., 5, 3046, https://doi.org/10.1175/1520-0485(1975)005<0030:AGOACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2009: Waves and Mean Flows. Cambridge University Press, 341 pp.

  • Buijsman, M. C., and Coauthors, 2016: Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. J. Phys. Oceanogr., 46, 13991419, https://doi.org/10.1175/JPO-D-15-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., B. K. Arbic, J. G. Richman, J. F. Shriver, A. J. Wallcraft, and L. Zamudio, 2017: Semidiurnal internal tide incoherence in the equatorial Pacific. J. Geophys. Res. Oceans, 122, 52865305, https://doi.org/10.1002/2016JC012590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors, 2009: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22, 6475, https://doi.org/10.5670/oceanog.2009.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, T. F., Y.-T. Lin, M. C. Buijsman, and A. E. Newhall, 2018: Internal tide modal ray refraction and energy ducting in baroclinic Gulf Stream currents. J. Phys. Oceanogr., 48, 19691993, https://doi.org/10.1175/JPO-D-18-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunphy, M., and K. G. Lamb, 2014: Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res. Oceans, 119, 523536, https://doi.org/10.1002/2013JC009293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunphy, M., A. L. Ponte, P. Klein, and S. Le Gentil, 2017: Low-mode internal tide propagation in a turbulent eddy field. J. Phys. Oceanogr., 47, 649665, https://doi.org/10.1175/JPO-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Early, J. J., M. P. Lelong, and K. S. Smith, 2020: Fast and accurate computation of vertical modes. J. Adv. Model. Earth Syst., 12, e2019MS001939, https://doi.org/10.1029/2019MS001939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and D. Olbers, 2014: An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J. Phys. Oceanogr., 44, 20932106, https://doi.org/10.1175/JPO-D-13-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L. L., D. Alsdorf, R. Morrow, E. Rodriguez, and N. Mognard, Eds., 2012: SWOT: The Surface Water and Ocean Topography Mission: Wide-Swatch Altimetric Measurement of Water Elevation on Earth. JPL Publ. 12-05, 228 pp., https://trs.jpl.nasa.gov/handle/2014/41996.

  • Johnston, T. M. S., D. L. Rudnick, and S. M. Kelly, 2015: Standing internal tides in the Tasman Sea observed by gliders. J. Phys. Oceanogr., 45, 27152737, https://doi.org/10.1175/JPO-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., M. Savva, and J. V. Jacques, 2019: Diffusion of inertia-gravity waves by geostrophic turbulence. J. Fluid Mech., 869, R7, https://doi.org/10.1017/jfm.2019.300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., 2016: The vertical mode decomposition of surface and internal tides in the presence of a free surface and arbitrary topography. J. Phys. Oceanogr., 46, 37773788, https://doi.org/10.1175/JPO-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, G. I. Ivey, and R. N. Lowe, 2015: Internal tide spectroscopy and prediction in the Timor Sea. J. Phys. Oceanogr., 45, 6483, https://doi.org/10.1175/JPO-D-14-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., P. F. Lermusiaux, T. F. Duda, and P. J. Haley Jr., 2016: A coupled-mode shallow-water model for tidal analysis: Internal tide reflection and refraction by the Gulf Stream. J. Phys. Oceanogr., 46, 36613679, https://doi.org/10.1175/JPO-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, https://doi.org/10.1175/JPO-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., H. L. Simmons, D. Braznikov, S. M. Kelly, J. A. MacKinnon, M. H. Alford, R. Pinkel, and J. D. Nash, 2016: Reflection of linear internal tides from realistic topography: The Tasman continental slope. J. Phys. Oceanogr., 46, 33213337, https://doi.org/10.1175/JPO-D-16-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., 2004: Fluid Mechanics. 3rd ed. Academic Press, 759 pp.

  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavelle, J. W., and W. C. Thacker, 2008: A pretty good sponge: Dealing with open boundaries in limited-area ocean models. Ocean Modell., 20, 270292, https://doi.org/10.1016/j.ocemod.2007.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak, 2013: Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr., 43, 1728, https://doi.org/10.1175/JPO-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and D. E. Cartwright, 1966: Tidal spectroscopy and prediction. Philos. Trans. Roy. Soc. London, 259A, 533581, https://doi.org/10.1098/rsta.1966.0024.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., S. M. Kelly, E. L. Shroyer, J. N. Moum, and T. F. Duda, 2012: The unpredictable nature of internal tides on continental shelves. J. Phys. Oceanogr., 42, 19812000, https://doi.org/10.1175/JPO-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, A. D., B. K. Arbic, E. D. Zaron, A. C. Savage, J. G. Richman, M. C. Buijsman, and J. F. Shriver, 2019: Toward realistic nonstationarity of semidiurnal baroclinic tides in a hydrodynamic model. J. Geophys. Res. Oceans, 104, 66326642, https://doi.org/10.1029/2018JC014737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., and D. R. Watts, 2006: Internal tides in the southwestern Japan/East Sea. J. Phys. Oceanogr., 36, 2234, https://doi.org/10.1175/JPO2846.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickering, A., M. Alford, J. Nash, L. Rainville, M. Buijsman, D. S. Ko, and B. Lim, 2015: Structure and variability of internal tides in the Luzon Strait. J. Phys. Oceanogr., 45, 15741594, https://doi.org/10.1175/JPO-D-14-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., and Coauthors, 2015: Breaking internal waves keep the ocean in balance. Eos, Trans. Amer. Geophys. Union, 96, https://doi.org/10.1029/2015EO039555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2010: Mesoscale eddy-internal wave coupling. Part II: Energetics and results from PolyMode. J. Phys. Oceanogr., 40, 789801, https://doi.org/10.1175/2009JPO4039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., A. H. Chaudhuri, and S. V. Vinogradov, 2015: Long-period tides in an atmospherically driven, stratified ocean. J. Phys. Oceanogr., 45, 19171928, https://doi.org/10.1175/JPO-D-15-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236, https://doi.org/10.1175/JPO2889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, https://doi.org/10.1016/S0079-6611(97)00025-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, https://doi.org/10.1029/2011GL048617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A. C., and Coauthors, 2017a: Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. J. Geophys. Res. Oceans, 122, 25192538, https://doi.org/10.1002/2016JC012331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A. C., and Coauthors, 2017b: Spectral decomposition of internal gravity wave sea surface height in global models. J. Geophys. Res. Oceans, 122, 78037821, https://doi.org/10.1002/2017JC013009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko, 2012: An evaluation of the barotropic and internal tides in a high resolution global ocean circulation model. J. Geophys. Res., 17, C10024, https://doi.org/10.1029/2012jc008170.

    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., J. G. Richman, and B. K. Arbic, 2014: How stationary are the internal tides in a high-resolution global ocean circulation model? J. Geophys. Res. Oceans, 119, 27692787, https://doi.org/10.1002/2013JC009423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, G. L., G. Ferrando, and W. R. Young, 2017: An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow. J. Fluid Mech., 828, 779811, https://doi.org/10.1017/jfm.2017.509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2018: Observations of the Tasman Sea internal tide beam. J. Phys. Oceanogr., 48, 12831297, https://doi.org/10.1175/JPO-D-17-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems. Cambridge University Press, 371 pp.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the ocean. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., 2015: Non-stationary internal tides observed using dual-satellite altimetry. J. Phys. Oceanogr., 45, 22392246, https://doi.org/10.1175/JPO-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., 2017: Mapping the non-stationary internal tides with satellite altimetry. J. Geophys. Res. Oceans, 122, 539554, https://doi.org/10.1002/2016JC012487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and G. D. Egbert, 2014: Time-variable refraction of the internal tide at the Hawaiian Ridge. J. Phys. Oceanogr., 44, 538557, https://doi.org/10.1175/JPO-D-12-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, H. L. Simmons, D. Brazhnikov, and R. Pinkel, 2018: Satellite investigation of the M2 internal tide in the Tasman Sea. J. Phys. Oceanogr., 48, 687703, https://doi.org/10.1175/JPO-D-17-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 95 95 42
Full Text Views 11 11 4
PDF Downloads 16 16 7

Internal Tide Nonstationarity and Wave–Mesoscale Interactions in the Tasman Sea

View More View Less
  • 1 Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California
  • 2 Large Lakes Observatory and Physics and Astronomy Department, University of Minnesota–Duluth, Duluth, Minnesota
© Get Permissions
Restricted access

Abstract

Internal tides, generated by barotropic tides flowing over rough topography, are a primary source of energy into the internal wave field. As internal tides propagate away from generation sites, they can dephase from the equilibrium tide, becoming nonstationary. Here, we examine how low-frequency quasigeostrophic background flows scatter and dephase internal tides in the Tasman Sea. We demonstrate that a semi-idealized internal tide model [the Coupled-Mode Shallow Water model (CSW)] must include two background flow effects to replicate the in situ internal tide energy fluxes observed during the Tasmanian Internal Tide Beam Experiment (TBeam). The first effect is internal tide advection by the background flow, which strongly depends on the spatial scale of the background flow and is largest at the smaller scales resolved in the background flow model (i.e., 50–400 km). Internal tide advection is also shown to scatter internal tides from vertical mode-1 to mode-2 at a rate of about 1 mW m−2. The second effect is internal tide refraction due to background flow perturbations to the mode-1 eigenspeed. This effect primarily dephases the internal tide, attenuating stationary energy at a rate of up to 5 mW m−2. Detailed analysis of the stationary internal tide momentum and energy balances indicate that background flow effects on the stationary internal tide can be accurately parameterized using an eddy diffusivity derived from a 1D random walk model. In summary, the results identify an efficient way to model the stationary internal tide and quantify its loss of stationarity.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Anna C. Savage, a4savage@ucsd.edu

Abstract

Internal tides, generated by barotropic tides flowing over rough topography, are a primary source of energy into the internal wave field. As internal tides propagate away from generation sites, they can dephase from the equilibrium tide, becoming nonstationary. Here, we examine how low-frequency quasigeostrophic background flows scatter and dephase internal tides in the Tasman Sea. We demonstrate that a semi-idealized internal tide model [the Coupled-Mode Shallow Water model (CSW)] must include two background flow effects to replicate the in situ internal tide energy fluxes observed during the Tasmanian Internal Tide Beam Experiment (TBeam). The first effect is internal tide advection by the background flow, which strongly depends on the spatial scale of the background flow and is largest at the smaller scales resolved in the background flow model (i.e., 50–400 km). Internal tide advection is also shown to scatter internal tides from vertical mode-1 to mode-2 at a rate of about 1 mW m−2. The second effect is internal tide refraction due to background flow perturbations to the mode-1 eigenspeed. This effect primarily dephases the internal tide, attenuating stationary energy at a rate of up to 5 mW m−2. Detailed analysis of the stationary internal tide momentum and energy balances indicate that background flow effects on the stationary internal tide can be accurately parameterized using an eddy diffusivity derived from a 1D random walk model. In summary, the results identify an efficient way to model the stationary internal tide and quantify its loss of stationarity.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Anna C. Savage, a4savage@ucsd.edu
Save