• Alford, M. H., R.-C. Lien, H. Simmons, J. Klymak, S. Ramp, Y. J. Yang, D. Tang, and M.-H. Chang, 2010: Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr., 40, 13381355, https://doi.org/10.1175/2010JPO4388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aristizábal, M. F., M. R. Fewings, and L. Washburn, 2016: Contrasting spatial patterns in the diurnal and semidiurnal temperature variability in the Santa Barbara Channel, California. J. Geophys. Res. Oceans, 121, 427440, https://doi.org/10.1002/2015JC011239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badiey, M., L. Wan, and A. Song, 2013: Three-dimensional mapping of evolving internal waves during the Shallow Water 2006 experiment. J. Acoust. Soc. Amer., 133, 3345, https://doi.org/10.1121/1.4805661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becherer, J., J. N. Moum, J. A. Colosi, J. A. Lerczak, and J. M. McSweeney, 2020: Turbulence asymmetries in bottom boundary layer velocity pulses associated with onshore-propagating nonlinear internal waves. J. Phys. Oceanogr., 50, 23732391, https://doi.org/10.1175/JPO-D-19-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., Y. Uchiyama, J. C. McWilliams, and C. R. Hill-Lindsay, 2012: Modeling semidiurnal internal tide variability in the Southern California Bight. J. Phys. Oceanogr., 42, 6277, https://doi.org/10.1175/2011JPO4597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butman, B., P. S. Alexander, A. Scotti, R. C. Beardsley, and S. P. Anderson, 2006: Large internal waves in Massachusetts Bay transport sediments offshore. Cont. Shelf Res., 26, 20292049, https://doi.org/10.1016/j.csr.2006.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., N. Kumar, S. H. Suanda, T. M. Freismuth, and J. H. MacMahan, 2018: Statistics of internal tide bores and internal solitary waves observed on the inner continental shelf off Point Sal, California. J. Phys. Oceanogr., 48, 123143, https://doi.org/10.1175/JPO-D-17-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cudaback, C. N., and E. McPhee-Shaw, 2009: Diurnal-period internal waves near point conception, California. Estuarine Coastal Shelf Sci., 83, 349359, https://doi.org/10.1016/j.ecss.2008.12.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, T. F., J. M. Collis, Y.-T. Lin, A. E. Newhall, J. F. Lynch, and H. A. DeFerrari, 2012: Horizontal coherence of low-frequency fixed-path sound in a continental shelf region with internal-wave activity. J. Acoust. Soc. Amer., 131, 17821797, https://doi.org/10.1121/1.3666003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, C. R., and H. E. Seim, 2008: Complex EOF analysis as a method to separate barotropic and baroclinic velocity structure in shallow water. J. Atmos. Oceanic Technol., 25, 808821, https://doi.org/10.1175/2007JTECHO562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., J. H. MacMahan, T. M. Freismuth, M. K. Gough, and M. Kovatch, 2020: Inner-shelf vertical and alongshore temperature variability in the subtidal, diurnal, and semidiurnal bands along the central California coastline with headlands. J. Geophys. Res. Oceans, 125, e2019JC015347, https://doi.org/10.1029/2019JC015347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., and K. Helfrich, 2012: The effect of rotation on internal solitary waves. IMA J. Appl. Math., 77, 326339, https://doi.org/10.1093/imamat/hxs024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., E. Pelinovsky, and T. Talipova, 1997: The modified Korteweg-de Vries equation in the theory of large-amplitude internal waves. Nonlinear Processes Geophys., 4, 237250, https://doi.org/10.5194/npg-4-237-1997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., E. Pelinovsky, and O. Poloukhina, 2002: Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Processes Geophys., 9, 221235, https://doi.org/10.5194/npg-9-221-2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., C. Guo, K. Helfrich, and V. Vlasenko, 2014: Combined effect of rotation and topography on shoaling oceanic internal solitary waves. J. Phys. Oceanogr., 44, 11161132, https://doi.org/10.1175/JPO-D-13-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., and W. K. Melville, 1986: On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167, 285308, https://doi.org/10.1017/S0022112086002823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., and A. Hoering, 1997: Energetics of borelike internal waves. J. Geophys. Res., 102, 33233330, https://doi.org/10.1029/96JC03558.

  • Holloway, P. E., E. Pelinovsky, T. Talipova, and B. Barnes, 1997: A nonlinear model of internal tide transformation on the Australian North West Shelf. J. Phys. Oceanogr., 27, 871896, https://doi.org/10.1175/1520-0485(1997)027<0871:ANMOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., S. H. Suanda, J. A. Colosi, K. Haas, E. Di Lorenzo, A. J. Miller, and C. A. Edwards, 2019: Coastal semidiurnal internal tidal incoherence in the Santa Maria Basin, California: Observations and model simulations. J. Geophys. Res. Oceans, 124, 51585179, https://doi.org/10.1029/2018JC014891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C., and R. C. Beardsley, 1974: The generation of long nonlinear internal waves in a weakly stratified shear flow. J. Geophys. Res., 79, 453462, https://doi.org/10.1029/JC079i003p00453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. R. Fewings, 2012: The wind-and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, https://doi.org/10.1146/annurev-marine-120709-142745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., C. D. Winant, and M. C. Hendershott, 2003: Observations of the semidiurnal internal tide on the southern California slope and shelf. J. Geophys. Res., 108, 3068, https://doi.org/10.1029/2001JC001128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., and Coauthors, 2019: Untangling a web of interactions where surf meets coastal ocean. Eos, Trans. Amer. Geophys. Union, 100, https://doi.org/10.1029/2019EO122141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-T., A. E. Newhall, and J. F. Lynch, 2012: Low-frequency broadband sound source localization using an adaptive normal mode back-propagation approach in a shallow-water ocean. J. Acoust. Soc. Amer., 131, 17981813, https://doi.org/10.1121/1.3672643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-T., K. G. McMahon, J. F. Lynch, and W. L. Siegmann, 2013: Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas. J. Acoust. Soc. Amer., 133, 3749, https://doi.org/10.1121/1.4770240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2003a: Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492, https://doi.org/10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2003b: Shear and baroclinic energy flux on the summer New England shelf. J. Phys. Oceanogr., 33, 14621475, https://doi.org/10.1175/1520-0485(2003)033<1462:SABEFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, J. M., and Coauthors, 2020: Observations of shoaling nonlinear internal bores across the central California inner shelf. J. Phys. Oceanogr., 50, 111132, https://doi.org/10.1175/JPO-D-19-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. M. Farmer, W. D. Smyth, L. Armi, and S. Vagle, 2003: Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr., 33, 20932112, https://doi.org/10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. M. Farmer, E. L. Shroyer, W. D. Smyth, and L. Armi, 2007a: Dissipative losses in nonlinear internal waves propagating across the continental shelf. J. Phys. Oceanogr., 37, 19891995, https://doi.org/10.1175/JPO3091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., J. M. Klymak, J. D. Nash, A. Perlin, and W. D. Smyth, 2007b: Energy transport by nonlinear internal waves. J. Phys. Oceanogr., 37, 19681988, https://doi.org/10.1175/JPO3094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostrovsky, L. A., and K. R. Helfrich, 2019: Some new aspects of the joint effect of rotation and topography on internal solitary waves. J. Phys. Oceanogr., 49, 16391649, https://doi.org/10.1175/JPO-D-18-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., and Coauthors, 2004: Internal solitons in the northeastern South China Sea Part I: Sources and deep water propagation. IEEE J. Oceanic Eng., 29, 11571181, https://doi.org/10.1109/JOE.2004.840839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regal, R., and C. Wunsch, 1973: M2 tidal currents in the western North Atlantic. Deep-Sea Res. Oceanogr. Abstr., 20, 493502, https://doi.org/10.1016/0011-7471(73)90102-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., R. C. Beardsley, and B. Butman, 2007: Generation and propagation of nonlinear internal waves in Massachusetts Bay. J. Geophys. Res., 112, C10001, https://doi.org/10.1029/2007JC004313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., R. C. Beardsley, B. Butman, and J. Pineda, 2008: Shoaling of nonlinear internal waves in Massachusetts Bay. J. Geophys. Res., 113, C08031, https://doi.org/10.1029/2008JC004726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., J. N. Moum, and J. D. Nash, 2011: Nonlinear internal waves over New Jersey’s continental shelf. J. Geophys. Res., 116, C03022, https://doi.org/10.1029/2010JC006332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stastna, M., and K. G. Lamb, 2002: Large fully nonlinear internal solitary waves: The effect of background current. Phys. Fluids, 14, 29872999, https://doi.org/10.1063/1.1496510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, D., and Coauthors, 2007: Shallow Water’06: A joint acoustic propagation/nonlinear internal wave physics experiment. Oceanography, 20, 156167, https://doi.org/10.5670/oceanog.2007.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, J. A., J. A. Lerczak, and J. N. Moum, 2016: Horizontal variability of high-frequency nonlinear internal waves in Massachusetts Bay detected by an array of seafloor pressure sensors. J. Geophys. Res. Oceans, 121, 55875607, https://doi.org/10.1002/2016JC011866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., and K. Hutter, 2002: Numerical experiments on the breaking of solitary internal wavesover a slope–shelf topography. J. Phys. Oceanogr., 32, 17791793, https://doi.org/10.1175/1520-0485(2002)032<1779:NEOTBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., and N. Stashchuk, 2007: Three-dimensional shoaling of large-amplitude internal waves. J. Geophys. Res., 112, C11018, https://doi.org/10.1029/2007JC004107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, R. K., C. Brock Woodson, R. S. Arthur, O. B. Fringer, and S. G. Monismith, 2012: Nearshore internal bores and turbulent mixing in southern Monterey Bay. J. Geophys. Res., 117, C07017, https://doi.org/10.1029/2012JC008115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, R. K., M. E. Squibb, C. B. Woodson, J. R. Koseff, and S. G. Monismith, 2014: Stratified turbulence in the nearshore coastal ocean: Dynamics and evolution in the presence of internal bores. J. Geophys. Res. Oceans, 119, 87098730, https://doi.org/10.1002/2014JC010396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, R. K., M. Stastna, C. B. Woodson, and S. G. Monismith, 2016: Observations of nonlinear internal waves at a persistent coastal upwelling front. Cont. Shelf Res., 117, 100117, https://doi.org/10.1016/j.csr.2016.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, https://doi.org/10.1017/S002211209500125X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodson, C. B., 2018: The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci., 10, 421441, https://doi.org/10.1146/annurev-marine-121916-063619.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 92 95 48
Full Text Views 30 30 13
PDF Downloads 42 42 17

Alongshore Variability of Shoaling Internal Bores on the Inner Shelf

View More View Less
  • 1 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • 2 Helmholtz-Zentrum Geesthacht, Center for Materials and Coastal Research, Geesthacht, Germany
  • 3 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • 4 Department of Oceanography, Naval Postgraduate School, Monterey, California
  • 5 Ocean Sciences Division, U.S. Naval Research Laboratory, Stennis Space Center, Mississippi
  • 6 School of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon
© Get Permissions
Restricted access

Abstract

Temperature and velocity measurements from 42 moorings were used to investigate the alongshore variability of nonlinear internal bores as they propagated across the central California inner shelf. Moorings were deployed September–October 2017 offshore of the Point Sal headland. Regional coverage was ~30 km alongshore and ~15 km across shore, spanning 9–100-m water depths. In addition to subtidal processes modulating regional stratification, internal bores generated complex spatiotemporal patterns of stratification variability. Internal bores were alongshore continuous on the order of tens of kilometers at the 50-m isobath, but the length scales of frontal continuity decreased to O(1 km) at the 25-m isobath. The depth-averaged, bandpass-filtered (from 3 min to 16 h) internal bore kinetic energy (KEIB¯) was found to be nonuniform along a bore front, even in the case of an alongshore-continuous bore. The pattern of along-bore KEIB¯ variability varied for each bore, but a 2-week average indicated that KEIB¯ was generally strongest around Point Sal. The stratification ahead of a bore influenced both the bore’s amplitude and cross-shore evolution. The data suggest that alongshore stratification gradients can cause a bore to evolve differently at various alongshore locations. Three potential bore fates were observed: 1) bores transiting intact to the 9-m isobath, 2) bores being overrun by faster, subsequent bores, leading to bore-merging events, and 3) bores disappearing when the upstream pycnocline was near or below middepth. Maps of hourly stratification at each mooring and the estimated position of sequential bores demonstrated that an individual internal bore can significantly impact the waveguide of the subsequent bore.

Corresponding author: Jacqueline McSweeney, jack.mcsweeney@oregonstate.edu

Abstract

Temperature and velocity measurements from 42 moorings were used to investigate the alongshore variability of nonlinear internal bores as they propagated across the central California inner shelf. Moorings were deployed September–October 2017 offshore of the Point Sal headland. Regional coverage was ~30 km alongshore and ~15 km across shore, spanning 9–100-m water depths. In addition to subtidal processes modulating regional stratification, internal bores generated complex spatiotemporal patterns of stratification variability. Internal bores were alongshore continuous on the order of tens of kilometers at the 50-m isobath, but the length scales of frontal continuity decreased to O(1 km) at the 25-m isobath. The depth-averaged, bandpass-filtered (from 3 min to 16 h) internal bore kinetic energy (KEIB¯) was found to be nonuniform along a bore front, even in the case of an alongshore-continuous bore. The pattern of along-bore KEIB¯ variability varied for each bore, but a 2-week average indicated that KEIB¯ was generally strongest around Point Sal. The stratification ahead of a bore influenced both the bore’s amplitude and cross-shore evolution. The data suggest that alongshore stratification gradients can cause a bore to evolve differently at various alongshore locations. Three potential bore fates were observed: 1) bores transiting intact to the 9-m isobath, 2) bores being overrun by faster, subsequent bores, leading to bore-merging events, and 3) bores disappearing when the upstream pycnocline was near or below middepth. Maps of hourly stratification at each mooring and the estimated position of sequential bores demonstrated that an individual internal bore can significantly impact the waveguide of the subsequent bore.

Corresponding author: Jacqueline McSweeney, jack.mcsweeney@oregonstate.edu
Save