Abstract
Temperature and velocity measurements from 42 moorings were used to investigate the alongshore variability of nonlinear internal bores as they propagated across the central California inner shelf. Moorings were deployed September–October 2017 offshore of the Point Sal headland. Regional coverage was ~30 km alongshore and ~15 km across shore, spanning 9–100-m water depths. In addition to subtidal processes modulating regional stratification, internal bores generated complex spatiotemporal patterns of stratification variability. Internal bores were alongshore continuous on the order of tens of kilometers at the 50-m isobath, but the length scales of frontal continuity decreased to O(1 km) at the 25-m isobath. The depth-averaged, bandpass-filtered (from 3 min to 16 h) internal bore kinetic energy