• Abdalla, S., and P. A. E. M. Janssen, 2018: Monitoring waves and surface winds by satellite altimetry: Applications. Satellite Altimetry over Oceans and Land Surfaces, D. Stammer and A. Cazenave, Eds., CRC Press, 381–426.

    • Crossref
    • Export Citation
  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, https://doi.org/10.1029/2004JD004536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, D., O. B. Andersen, S. Bettadpur, M. H. Rio, R. Rummel, and D. Wiese, 2018: Auxiliary space-based systems for interpreting satellite altimetry, satellite gravity. Satellite Altimetry Over Oceans and Land Surfaces, D. Stammer and A. Cazenave, Eds., CRC Press, 149–186.

    • Crossref
    • Export Citation
  • Davies, J. H., and D. R. Davies, 2010: Earth’s surface heat flux. Solid Earth, 1, 524, https://doi.org/10.5194/se-1-5-2010.

  • Davis, R. E., 1994: Diapycnal mixing in the ocean: Equations for large-scale budgets. J. Phys. Oceanogr., 24, 777800, https://doi.org/10.1175/1520-0485(1994)024<0777:DMITOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Verdière, A. C., T. Huck, S. Pogossian, and M. Ollitrault, 2018: Available potential energy in density coordinates. J. Phys. Oceanogr., 48, 18671883, https://doi.org/10.1175/JPO-D-17-0272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., R. J. Bingham, R. L. Iverson, D. P. Nowacek, L. C. St. Laurent, and P. H. Wiebe, 2006: Does the marine biosphere mix the ocean? J. Mar. Res., 64, 541561, https://doi.org/10.1357/002224006778715720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2009: Data Assimilation: The Ensemble Kalman Filter. Springer Verlag, 332 pp.

  • Fenty, I., D. Menemenlis, and H. Zhang, 2017: Global coupled sea ice-ocean state estimation. Climate Dyn., 49, 931956, https://doi.org/10.1007/s00382-015-2796-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic and potential energies in the global ocean. Tellus, 62A, 92108, https://doi.org/10.3402/tellusa.v62i2.15680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. Hill, R. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. Ponte, 2017: ECCO version 4 release 3. JPL Doc., ftp://ecco.jpl.nasa.gov/Version4/Release3/doc/v4r3_summary.pdf.

  • Fukumori, I., P. Heimbach, R. M. Ponte, and C. Wunsch, 2018: A dynamically-consistent ocean climatology and its temporal variations. Bull. Amer. Meteor. Soc., 99, 21072128, https://doi.org/10.1175/BAMS-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2019: ECCO Version 4 Release 4. https://ecco.jpl.nasa.gov/drive/files/Version4/Release4/doc/v4r4_synopsis.pdf.

  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21, 499528, https://doi.org/10.1016/0011-7471(74)90010-2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models. Princeton University Press, 518 pp.

  • Heimbach, P., C. Wunsch, R. M. Ponte, G. Forget, C. Hill, and J. Utke, 2011: Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: Toward observing system design. Deep-Sea Res. II, 58, 18581879, https://doi.org/10.1016/j.dsr2.2010.10.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heimbach, P., and Coauthors, 2019: Putting it all together: Adding value to the global ocean and climate observing systems with complete self-consistent ocean state and parameter estimates. Front. Mar. Sci., 6, 55, https://doi.org/10.3389/fmars.2019.00055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., J. Sprintall, C. Guan, M. J. McPhaden, F. Wang, D. M. Hu, and W. Cai, 2020: Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv., 6, eaxx7727, https://doi.org/10.1126/sciadv.aax7727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2005: Available potential energy in the world’s oceans. J. Mar. Res., 63, 141158, https://doi.org/10.1357/0022240053693770.

  • Kalmikov, A., and P. Heimbach, 2014: A Hessian-based method for uncertainty quantification in global ocean state estimation. SIAM J. Sci. Comput., 36, S267S295, https://doi.org/10.1137/130925311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 341 pp.

  • Katija, K., 2012: Biogenic inputs to ocean mixing. J. Exp. Biol., 215, 10401049, https://doi.org/10.1242/jeb.059279.

  • Laepple, T., and P. Huybers, 2014: Global and regional variability in marine surface temperatures. Geophys. Res. Lett., 41, 25282534, https://doi.org/10.1002/2014GL059345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., F. Xu, W. Zhou, D. Wang, J. Wright, Z. Liu, and Y. Lin, 2017: Development of a global gridded Argo data set with Barnes successive corrections. J. Geophys. Res. Oceans, 122, 866889, https://doi.org/10.1002/2016JC012285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyssignac, B., and Coauthors, 2019: Measuring global ocean heat content to estimate the Earth energy imbalance. Front. Mar. Sci., 6, 432, https://doi.org/10.3389/fmars.2019.00432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291, http://ocw.mit.edu/ans7870/resources/Wunsch/wunschtext.htm.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and G. J. F. MacDonald, 1960: The Rotation of the Earth: A Geophysical Discussion. Cambridge University Press, 323 pp.

  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer, 704 pp.

  • Oort, A. H., L. A. Anderson, and P. Peixoto, 1994: Estimates of the energy cycle of the oceans. J. Geophys. Res., 99, 76657688, https://doi.org/10.1029/93JC03556.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. M. Chen, and N. Schneider, 2017: Dynamical links between the decadal variability of the Oyashio and Kuroshio extensions. J. Climate, 30, 95919605, https://doi.org/10.1175/JCLI-D-17-0397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rascle, N., and F. Ardhuin, 2013: A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modell., 70, 174188, https://doi.org/10.1016/j.ocemod.2012.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rascle, N., F. Ardhuin, P. Queffeulou, and D. Croizé-Fillon, 2008: A global wave parameter database for geophysical applications. Part 1: Wave-current-turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modell., 25, 154171, https://doi.org/10.1016/j.ocemod.2008.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. D. Egbert, 2018: Tides and satellite altimetry. Satellite Altimetry Over Oceans and Land Surfaces, D. Stammer and A. Cazenave, Eds., CRC Press, 427–458.

    • Crossref
    • Export Citation
  • Reguero, B. G., I. J. Losada, and F. J. Méndez, 2019: A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun., 10, 205, https://doi.org/10.1038/s41467-018-08066-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J.-S. Storch, and C. Eden, 2016: The total energy flux leaving the ocean’s mixed layer. J. Phys. Oceanogr., 46, 18851900, https://doi.org/10.1175/JPO-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2009: The Argo Program: Observing the global ocean with profiling floats. Oceanography, 22, 3443, https://doi.org/10.5670/oceanog.2009.36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roquet, F., 2013: Dynamical potential energy: A new approach to ocean energetics. J. Phys. Oceanogr., 43, 457476, https://doi.org/10.1175/JPO-D-12-098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., C. Wunsch, and K. Ueyoshi, 2006: Temporal changes in ocean eddy transports. J. Phys. Oceanogr., 36, 543550, https://doi.org/10.1175/JPO2858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2013: Available potential energy and exergy in stratified fluids. Annu. Rev. Fluid Mech., 45, 3558, https://doi.org/10.1146/annurev-fluid-011212-140620.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 2005: The Turbulent Ocean. Cambridge University Press, 439 pp.

  • von Storch, J. S., H. Sasaki, and J. Marotzke, 2007: Wind-generated power input to the deep ocean: An estimate using a 1/10° general circulation model. J. Phys. Oceanogr., 37, 657672, https://doi.org/10.1175/JPO3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., G. R. Flierl, J. H. LaCasce, J. L. McClean, and A. Mahadevan, 2013: Reconstructing the ocean’s interior from surface data. J. Phys. Oceanogr., 43, 16111626, https://doi.org/10.1175/JPO-D-12-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., C. C. Qian, and R. X. Huang, 2006: Mechanical energy input to the world oceans due to atmospheric loading. Chin. Sci. Bull., 51, 327330, https://doi.org/10.1007/s11434-006-0327-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, R. R., 2010: Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy. 2nd ed. Springer, 258 pp.

  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications. Cambridge University Press, 371 pp.

    • Crossref
    • Export Citation
  • Wunsch, C., 2016: Global ocean integrals and means, with trend implications. Annu. Rev. Mar. Sci., 8, 133, https://doi.org/10.1146/annurev-marine-122414-034040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2018: Towards determining uncertainties in global oceanic mean values of heat, salt, and surface elevation. Tellus, 70A, 114, https://doi.org/10.1080/16000870.2018.1471911.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2020: On multi-year ocean thermal variability. Tellus, in press.

  • Young, I. R., and A. Ribal, 2019: Multiplatform evaluation of global trends in wind speed and wave height. Science, 364, 548552, https://doi.org/10.1126/science.aav9527.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 133 133 44
Full Text Views 27 27 17
PDF Downloads 33 33 22

Is the Ocean Speeding Up? Ocean Surface Energy Trends

View More View Less
  • 1 Harvard University, Cambridge, Massachusetts
  • 2 Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

A recent paper by Hu et al. (https://doi.org/10.1126/sciadv.aax7727) has raised the interesting question of whether the ocean circulation has been “speeding up” in the last decades. Their result contrasts with some estimates of the lack of major trends in oceanic surface gravity waves and wind stress. In general, both the increased energy and implied power inputs of the calculated circulation correspond to a small fraction of the very noisy background values. An example is the implied power increase of about 3 × 108 W, as compared to wind energy inputs of order 1012 W. Here the problem is reexamined using a state estimate that has the virtue of being energy, mass, etc. conserving. Because it is an estimate over an entire recent 26-yr interval, it is less sensitive to the strong changes in observational data density and distribution, and it does not rely upon nonconservative “reanalyses.” The focus is on the energy lying in the surface layers of the ocean. A potential energy increase is found, but it is almost completely unavailable—arising from the increase in mean sea level. A weak increase in kinetic energy in the top layer (10 m) is confirmed, corresponding to an increase of order 1 cm s−1 yr−1 over 26 years. An estimate of kinetic energy in the full water column shows no monotonic trend, but the changes in the corresponding available potential energy are not calculated here.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carl Wunsch, cwunsch@fas.harvard.edu; carl.wunsch@gmail.com

Abstract

A recent paper by Hu et al. (https://doi.org/10.1126/sciadv.aax7727) has raised the interesting question of whether the ocean circulation has been “speeding up” in the last decades. Their result contrasts with some estimates of the lack of major trends in oceanic surface gravity waves and wind stress. In general, both the increased energy and implied power inputs of the calculated circulation correspond to a small fraction of the very noisy background values. An example is the implied power increase of about 3 × 108 W, as compared to wind energy inputs of order 1012 W. Here the problem is reexamined using a state estimate that has the virtue of being energy, mass, etc. conserving. Because it is an estimate over an entire recent 26-yr interval, it is less sensitive to the strong changes in observational data density and distribution, and it does not rely upon nonconservative “reanalyses.” The focus is on the energy lying in the surface layers of the ocean. A potential energy increase is found, but it is almost completely unavailable—arising from the increase in mean sea level. A weak increase in kinetic energy in the top layer (10 m) is confirmed, corresponding to an increase of order 1 cm s−1 yr−1 over 26 years. An estimate of kinetic energy in the full water column shows no monotonic trend, but the changes in the corresponding available potential energy are not calculated here.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carl Wunsch, cwunsch@fas.harvard.edu; carl.wunsch@gmail.com
Save