• Aguirre, C., O. Pizarro, P. T. Strub, R. Garreaud, and J. A. Barth, 2012: Seasonal dynamics of the near-surface alongshore flow off central Chile. J. Geophys. Res., 117, C01006, https://doi.org/10.1029/2011JC007379.

    • Search Google Scholar
    • Export Citation
  • Aguirre, C., R. D. Garreaud, and J. A. Rutllant, 2014: Surface ocean response to synoptic-scale variability in wind stress and heat fluxes off south-central Chile. Dyn. Atmos. Oceans, 65, 6485, https://doi.org/10.1016/j.dynatmoce.2013.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. S., P. Newberger, and J. Federiuk, 1995: Upwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing. J. Phys. Oceanogr., 25, 18431866, https://doi.org/10.1175/1520-0485(1995)025<1843:UCOTOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S. E., 2004: Restrictions on deep flow across the shelf-break and the role of submarine canyons in facilitating such flow. Surv. Geophys., 25, 221247, https://doi.org/10.1007/s10712-004-1275-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S. E., and X. Durrieu de Madron, 2009: A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci., 5, 607620, https://doi.org/10.5194/os-5-607-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S. E., and B. Hickey, 2010: Dynamics of advection-driven upwelling over a shelf break submarine canyon. J. Geophys. Res., 115, C08018, https://doi.org/10.1029/2009JC005731.

    • Search Google Scholar
    • Export Citation
  • Alvarez, A., J. Tintoré, and A. Sabatés, 1996: Flow modification and shelf-slope exchange induced by a submarine canyon off the northeast Spanish coast. J. Geophys. Res., 101, 12 04312 055, https://doi.org/10.1029/95JC03554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, J. A., 1989: Stability of a coastal upwelling front: 2. Model results and comparison with observations. J. Geophys. Res., 94, 10 85710 883, https://doi.org/10.1029/JC094iC08p10857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, J. A., 1994: Short-wave length instabilities on coastal jets and fronts. J. Geophys. Res., 99, 16 09516 115, https://doi.org/10.1029/94JC01270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, E., D. Field, and C. Roy, 2013: Canary current upwelling: More or less? Prog. Oceanogr., 116, 167178, https://doi.org/10.1016/j.pocean.2013.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1983: The near-surface dynamics of coastal upwelling. Prog. Oceanogr., 12, 223257, https://doi.org/10.1016/0079-6611(83)90009-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2016a: Continental shelf baroclinic instability. Part I: Relaxation from upwelling or downwelling. J. Phys. Oceanogr., 46, 551568, https://doi.org/10.1175/JPO-D-15-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2016b: Cross-shelf exchange. Annu. Rev. Mar. Sci., 8, 5978, https://doi.org/10.1146/annurev-marine-010814-015717.

  • Capet, X., P. Marchesiello, and J. McWilliams, 2004: Upwelling response to coastal wind profiles. Geophys. Res. Lett., 31, L13311, https://doi.org/10.1029/2004GL020123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California current system. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, M.-E., and E. J. Kearns, 2003: Production regimes in four Eastern Boundary Current systems. Deep-Sea Res. II, 50, 31993221, https://doi.org/10.1016/j.dsr2.2003.07.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., and J. A. Barth, 2006: The relative importance of wind strength and along-shelf bathymetric variations on the separation of a coastal upwelling jet. J. Phys. Oceanogr., 36, 412425, https://doi.org/10.1175/JPO2867.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., and J. A. Barth, 2007: The role of wind stress curl in jet separation at a cape. J. Phys. Oceanogr., 37, 26522671, https://doi.org/10.1175/2007JPO3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of across-shore open boundaries in a barotropic ocean model. J. Phys. Oceanogr., 15, 10601075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and S. E. Allen, 1996: The influence of canyons on shelf currents: A theoretical study. J. Geophys. Res., 101, 18 04318 059, https://doi.org/10.1029/96JC01149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., X.-H. Yan, and Y. Jiang, 2014: Coastal cape and canyon effects on wind-driven upwelling in northern Taiwan Strait. J. Geophys. Res. Oceans, 119, 46054625, https://doi.org/10.1002/2014JC009831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, T. P., and B. M. Hickey, 2014: Regional impact of submarine canyons during seasonal upwelling. J. Geophys. Res. Oceans, 119, 953975, https://doi.org/10.1002/2013JC009452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Physical and Numerical Aspects. 2nd ed. Introduction to Geophysical Fluid Dynamics, Vol. 101, Academic Press, 875 pp.

    • Crossref
    • Export Citation
  • Dawe, J. T., and S. E. Allen, 2010: Solution convergence of flow over steep topography in a numerical model of canyon upwelling. J. Geophys. Res., 115, C05008, https://doi.org/10.1029/2009JC005597.

    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., and J. M. Klinck, 2002: The influence of open versus periodic alongshore boundaries on circulation near submarine canyons. J. Atmos. Oceanic Technol., 19, 17221737, https://doi.org/10.1175/1520-0426(2002)019<1722:TIOOVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., and J. M. Klinck, 2004: A model study of circulation and cross-shelf exchange on the west Antarctic Peninsula continental shelf. Deep-Sea Res. II, 51, 20032022, https://doi.org/10.1016/j.dsr2.2004.07.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durski, S. M., and J. Allen, 2005: Finite-amplitude evolution of instabilities associated with the coastal upwelling front. J. Phys. Oceanogr., 35, 16061628, https://doi.org/10.1175/JPO2762.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durski, S. M., J. Allen, G. Egbert, and R. Samelson, 2007: Scale evolution of finite-amplitude instabilities on a coastal upwelling front. J. Phys. Oceanogr., 37, 837854, https://doi.org/10.1175/JPO2994.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, W., B. Hales, P. G. Strutton, R. K. Shearman, and J. A. Barth, 2015: Failure to bloom: Intense upwelling results in negligible phytoplankton response and prolonged CO2 outgassing over the Oregon shelf. J. Geophys. Res. Oceans, 120, 14461461, https://doi.org/10.1002/2014JC010580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flament, P., L. Armi, and L. Washburn, 1985: The evolving structure of an upwelling filament. J. Geophys. Res., 90, 11 76511 778, https://doi.org/10.1029/JC090iC06p11765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, 6, 141164.

  • Flexas, M., D. Boyer, M. Espino, J. Puigdefabregas, A. Rubio, and J. Company, 2008: Circulation over a submarine canyon in the NW Mediterranean. J. Geophys. Res., 113, C12002, https://doi.org/10.1029/2006JC003998.

    • Search Google Scholar
    • Export Citation
  • Florez-Leiva, L., E. Damm, and L. Farías, 2013: Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem. Prog. Oceanogr., 112–113, 3848, https://doi.org/10.1016/j.pocean.2013.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, J., and J. S. Allen, 2005: On open boundary conditions for a limited-area coastal model off Oregon. Part I: Response to idealized wind forcing. Ocean Modell., 8, 115133, https://doi.org/10.1016/j.ocemod.2003.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grantham, B. A., F. Chan, K. J. Nielsen, D. S. Fox, J. A. Barth, A. Huyer, J. Lubchenco, and B. A. Menge, 2004: Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature, 429, 749754, https://doi.org/10.1038/nature02605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, https://doi.org/10.1016/S0377-0265(00)00049-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Miranda, E., R. Veas, F. A. Labra, M. Salamanca, and R. A. Quiñones, 2012: Response of the epibenthic macrofaunal community to a strong upwelling-driven hypoxic event in a shallow bay of the southern Humboldt Current System. Mar. Environ. Res., 79, 1628, https://doi.org/10.1016/j.marenvres.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickey, B., and N. Banas, 2008: Why is the northern end of the California Current System so productive? Oceanography, 21, 90107, https://doi.org/10.5670/oceanog.2008.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1995: Coastal submarine canyons. Topographic Effects in the Ocean: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 95–110.

  • Hickey, B. M., 1997: The response of a steep-sided, narrow canyon to time-variable wind forcing. J. Phys. Oceanogr., 27, 697726, https://doi.org/10.1175/1520-0485(1997)027<0697:TROASS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1998: Coastal oceanography of western North America from the tip of Baja California to Vancouver Island. The Global Coastal Ocean: Regional Studies and Syntheses, A. R. Robinson and K. H. Brink, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 11, John Wiley and Sons, 345–393.

  • Houghton, R., F. Aikman III, and H. Ou, 1988: Shelf-slope frontal structure and cross-shelf exchange at the New England shelf-break. Cont. Shelf Res., 8, 687710, https://doi.org/10.1016/0278-4343(88)90072-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howatt, T., and S. Allen, 2013: Impact of the continental shelf slope on upwelling through submarine canyons. J. Geophys. Res. Oceans, 118, 58145828, https://doi.org/10.1002/jgrc.20401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1995: Circulation, exchange and water masses at the ocean margin: The role of physical processes at the shelf edge. Prog. Oceanogr., 35, 353431, https://doi.org/10.1016/0079-6611(95)80003-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huyer, A., 1983: Coastal upwelling in the California Current system. Prog. Oceanogr., 12, 259284, https://doi.org/10.1016/0079-6611(83)90010-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordi, A., A. Orfila, G. Basterretxea, and J. Tintoré, 2005: Shelf-slope exchanges by frontal variability in a steep submarine canyon. Prog. Oceanogr., 66, 120141, https://doi.org/10.1016/j.pocean.2004.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordi, A., G. Basterretxea, A. Orfila, and J. Tintoré, 2006: Analysis of the circulation and shelf-slope exchanges in the continental margin of the northwestern Mediterranean. Ocean Sci., 2, 173181, https://doi.org/10.5194/os-2-173-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordi, A., J. M. Klinck, G. Basterretxea, A. Orfila, and J. Tintoré, 2008: Estimation of shelf-slope exchanges induced by frontal instability near submarine canyons. J. Geophys. Res., 113, C05016, https://doi.org/10.1029/2007JC004207.

    • Search Google Scholar
    • Export Citation
  • Kämpf, J., 2006: Transient wind-driven upwelling in a submarine canyon: A process-oriented modeling study. J. Geophys. Res., 111, C11011, https://doi.org/10.1029/2006JC003497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kämpf, J., 2007: On the magnitude of upwelling fluxes in shelf-break canyons. Cont. Shelf Res., 27, 22112223, https://doi.org/10.1016/j.csr.2007.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2015: Energetics of eddy–mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45, 11031120, https://doi.org/10.1175/JPO-D-14-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S., R. Samelson, and C. Snyder, 2009: Ensemble-based estimates of the predictability of wind-driven coastal ocean flow over topography. Mon. Wea. Rev., 137, 25152537, https://doi.org/10.1175/2009MWR2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinck, J. M., 1996: Circulation near submarine canyons: A modeling study. J. Geophys. Res., 101, 12111223, https://doi.org/10.1029/95JC02901.

  • Kock, A., S. Gebhardt, and H. W. Bange, 2008: Methane emissions from the upwelling area off Mauritania (NW Africa). Biogeosciences, 5, 11191125, https://doi.org/10.5194/bg-5-1119-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosro, P. M., J. A. Barth, and P. T. Strub, 1997: The coastal jet: Observations of surface currents over the Oregon continental shelf from HF radar. Oceanography, 10, 5356, https://doi.org/10.5670/oceanog.1997.22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lachkar, Z., and N. Gruber, 2013: Response of biological production and air–sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems. J. Mar. Syst., 109–110, 149160, https://doi.org/10.1016/j.jmarsys.2012.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letelier, J., O. Pizarro, and S. Nuñez, 2009: Seasonal variability of coastal upwelling and the upwelling front off central Chile. J. Geophys. Res., 114, C12009, https://doi.org/10.1029/2008JC005171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., X. San Liang, and R. H. Weisberg, 2007: Rectification of the bias in the wavelet power spectrum. J. Atmos. Oceanic Technol., 24, 20932102, https://doi.org/10.1175/2007JTECHO511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münchow, A., 2000: Wind stress curl forcing of the coastal ocean near Point Conception, California. J. Phys. Oceanogr., 30, 12651280, https://doi.org/10.1175/1520-0485(2000)030<1265:WSCFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, G., and L. Hutchings, 1983: The Benguela upwelling area. Prog. Oceanogr., 12, 333356, https://doi.org/10.1016/0079-6611(83)90013-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., and H. Hurlburt, 1972: A numerical model of coastal upwelling. J. Phys. Oceanogr., 2, 1426, https://doi.org/10.1175/1520-0485(1972)002<0014:ANMOCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Sci., 21, 251269, https://doi.org/10.1016/0021-9991(76)90023-1.

    • Search Google Scholar
    • Export Citation
  • Ramos-Musalem, K., and S. E. Allen, 2019: The impact of locally-enhanced vertical diffusivity on the cross-shelf transport of tracers induced by a submarine canyon. J. Phys. Oceanogr., 49, 561584, https://doi.org/10.1175/JPO-D-18-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennie, S. J., C. B. Pattiaratchi, and R. D. McCauley, 2009: Numerical simulation of the circulation within the Perth Submarine Canyon, Western Australia. Cont. Shelf Res., 29, 20202036, https://doi.org/10.1016/j.csr.2009.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R., and Coauthors, 2002: Wind stress forcing of the Oregon coastal ocean during the 1999 upwelling season. J. Geophys. Res., 107, 3034, https://doi.org/10.1029/2001JC000900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108, 3090, https://doi.org/10.1029/2001JC001047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • She, J., and J. M. Klinck, 2000: Flow near submarine canyons driven by constant winds. J. Geophys. Res., 105, 28 67128 694, https://doi.org/10.1029/2000JC900126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skliris, N., A. Goffart, J. Hecq, and S. Djenidi, 2001: Shelf-slope exchanges associated with a steep submarine canyon off Calvi (Corsica, NW Mediterranean Sea): A modeling approach. J. Geophys. Res., 106, 19 88319 901, https://doi.org/10.1029/2000JC000534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobarzo, M., G. S. Saldías, F. J. Tapia, L. Bravo, C. Moffat, and J. L. Largier, 2016: On subsurface cooling associated with the Biobio River Canyon (Chile). J. Geophys. Res. Oceans, 121, 45684584, https://doi.org/10.1002/2016JC011796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y., and D. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115, 228244, https://doi.org/10.1006/jcph.1994.1189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, R., and Coauthors, 2011: Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res., 116, C09006, https://doi.org/10.1029/2010JC006344.

    • Search Google Scholar
    • Export Citation
  • Troupin, C., E. Mason, J.-M. Beckers, and P. Sangrà, 2012: Generation of the Cape Ghir upwelling filament: A numerical study. Ocean Modell., 41, 115, https://doi.org/10.1016/j.ocemod.2011.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D.-P., and A. Jordi, 2011: Surface frontogenesis and thermohaline intrusion in a shelfbreak front. Ocean Modell., 38, 161170, https://doi.org/10.1016/j.ocemod.2011.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washburn, L., and L. Armi, 1988: Observations of frontal instabilities on an upwelling filament. J. Phys. Oceanogr., 18, 10751092, https://doi.org/10.1175/1520-0485(1988)018<1075:OOFIOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitney, M. M., and J. Allen, 2009a: Coastal wind-driven circulation in the vicinity of a bank. Part I: Modeling flow over idealized symmetric banks. J. Phys. Oceanogr., 39, 12731297, https://doi.org/10.1175/2008JPO3966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitney, M. M., and J. Allen, 2009b: Coastal wind-driven circulation in the vicinity of a bank. Part II: Modeling flow over the Heceta Bank complex on the Oregon coast. J. Phys. Oceanogr., 39, 12981316, https://doi.org/10.1175/2008JPO3967.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., and G. G. Gawarkiewicz, 2015: Length scale of the finite-amplitude meanders of shelfbreak fronts. J. Phys. Oceanogr., 45, 25982620, https://doi.org/10.1175/JPO-D-14-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., and S. J. Lentz, 2017: Wind-driven circulation in a shelf valley. Part I: Mechanism of the asymmetrical response to along-shelf winds in opposite directions. J. Phys. Oceanogr., 47, 29272947, https://doi.org/10.1175/JPO-D-17-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 164 164 33
Full Text Views 28 28 7
PDF Downloads 34 34 8

The Influence of a Submarine Canyon on the Circulation and Cross-Shore Exchanges around an Upwelling Front

View More View Less
  • 1 Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada, and Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, and Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes, Valdivia, Chile
  • 2 Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
© Get Permissions
Restricted access

Abstract

The response of a coastal ocean numerical model, typical of eastern boundaries, is investigated under upwelling-favorable wind forcing and with/without the presence of a submarine canyon. Experiments were run over three contrasting shelf depth/slope bathymetries and forced by an upwelling-favorable alongshore wind. Random noise in the wind stress field was used to trigger the onset of frontal instabilities, which formed around the upwelling front. Their development and evolution are enhanced over deeper (and less inclined) shelves. Experiments without a submarine canyon agree well with previous studies of upwelling frontal instabilities; baroclinic instabilities grow along the front in time. The addition of a submarine canyon incising the continental shelf dramatically changes the circulation and frontal characteristics. Intensified upwelling is channeled through the downstream side of the canyon in all depth/slope configurations. Farther downstream a downwelling area is generated, being larger and stronger on a shallow shelf. The canyon affects mainly the location of the southward upwelling jet, which is deflected inshore and accelerated after passing over the canyon. This process is accompanied by a break in the alongshore scale of the instabilities on either side of the canyon. Term balances of the depth-averaged cross-shore momentum equation reaffirm the downstream acceleration of the jet and the increased wavelength of the instabilities, and clarify the dominant balance between the advection and ageostrophic terms around the canyon.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gonzalo S. Saldías, gsaldias@ubiobio.cl

Abstract

The response of a coastal ocean numerical model, typical of eastern boundaries, is investigated under upwelling-favorable wind forcing and with/without the presence of a submarine canyon. Experiments were run over three contrasting shelf depth/slope bathymetries and forced by an upwelling-favorable alongshore wind. Random noise in the wind stress field was used to trigger the onset of frontal instabilities, which formed around the upwelling front. Their development and evolution are enhanced over deeper (and less inclined) shelves. Experiments without a submarine canyon agree well with previous studies of upwelling frontal instabilities; baroclinic instabilities grow along the front in time. The addition of a submarine canyon incising the continental shelf dramatically changes the circulation and frontal characteristics. Intensified upwelling is channeled through the downstream side of the canyon in all depth/slope configurations. Farther downstream a downwelling area is generated, being larger and stronger on a shallow shelf. The canyon affects mainly the location of the southward upwelling jet, which is deflected inshore and accelerated after passing over the canyon. This process is accompanied by a break in the alongshore scale of the instabilities on either side of the canyon. Term balances of the depth-averaged cross-shore momentum equation reaffirm the downstream acceleration of the jet and the increased wavelength of the instabilities, and clarify the dominant balance between the advection and ageostrophic terms around the canyon.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gonzalo S. Saldías, gsaldias@ubiobio.cl
Save