• Benthuysen, J., R. Furue, J. P. McCreary, N. L. Bindoff, and H. E. Phillips, 2014: Dynamics of the Leeuwin Current: Part II. Impacts of mixing, friction, and advection on a buoyancy-driven eastern boundary current over a shelf. Dyn. Atmos. Oceans, 65, 3963, https://doi.org/10.1016/j.dynatmoce.2013.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1986: Topographic drag due to barotropic flow over the continental shelf and slope. J. Phys. Oceanogr., 16, 21502158, https://doi.org/10.1175/1520-0485(1986)016<2150:TDDTBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2016: Cross-shelf exchange. Annu. Rev. Mar. Sci., 8, 5978, https://doi.org/10.1146/annurev-marine-010814-015717.

  • Connolly, T. P., B. M. Hickey, I. Shulman, and R. E. Thomson, 2014: Coastal trapped waves, alongshore pressure gradients, and the California Undercurrent. J. Phys. Oceanogr., 44, 319342, https://doi.org/10.1175/JPO-D-13-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1978: Arrested topographic wave. J. Phys. Oceanogr., 8, 4762, https://doi.org/10.1175/1520-0485(1978)008<0047:TATW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denbo, D. W., and J. S. Allen, 1983: Mean flow generation on a continental margin by periodic wind forcing. J. Phys. Oceanogr., 13, 7892, https://doi.org/10.1175/1520-0485(1983)013<0078:MFGOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frouin, R., A. F. G. Fiuza, I. Ambar, and T. J. Boyd, 1990: Observations of a poleward surface current off the coasts of Portugal and Spain during winter. J. Geophys. Res. Oceans, 95, 679691, https://doi.org/10.1029/JC095iC01p00679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furue, R., J. P. McCreary, J. Benthuysen, H. E. Phillips, and N. L. Bindoff, 2013: Dynamics of the Leeuwin Current: Part I. Coastal flows in an inviscid, variable-density, layer model. Dyn. Atmos. Oceans, 63, 2459, https://doi.org/10.1016/j.dynatmoce.2013.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., 1979: Topographic Rossby waves off East Australia; identification and role in shelf circulation. J. Phys. Oceanogr., 9, 244253, https://doi.org/10.1175/1520-0485(1979)009<0244:TRWOEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, J. A., and Coauthors, 2018: AMM15: A new high-resolution NEMO configuration for operational simulation of the European north-west shelf. Geosci. Model Dev., 11, 681696, https://doi.org/10.5194/gmd-11-681-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guihou, K., J. Polton, J. Harle, S. Wakelin, E. O’Dea, and J. Holt, 2017: Kilometric scale modeling of the North West European shelf seas: Exploring the spatial and temporal variability of internal tides. J. Geophys. Res. Oceans, 123, 688707, https://doi.org/10.1002/2017JC012960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and K. H. Brink, 1986: Mean currents driven by topographic drag over the continental shelf and slope. J. Phys. Oceanogr., 16, 21592171, https://doi.org/10.1175/1520-0485(1986)016<2159:MCDBTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., S. A. Cunningham, C. Johnson, S. F. Gary, C. Griffiths, J. F. Read, and T. Sherwin, 2015: Multidecadal variability of potential temperature, salinity, and transport in the eastern subpolar North Atlantic. J. Geophys. Res. Oceans, 120, 59455967, https://doi.org/10.1002/2015JC010762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1981: Waves and currents near the continental shelf edge. Prog. Oceanogr., 10, 193226, https://doi.org/10.1016/0079-6611(81)90004-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1984: Slope currents and “JEBAR.” J. Phys. Oceanogr., 14, 795810, https://doi.org/10.1175/1520-0485(1984)014<0795:SCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1986: The Rockall slope current and shelf-edge processes. Proc. Roy. Soc. Edinburgh, 88B, 83101, https://doi.org/10.1017/S0269727000004486.

    • Search Google Scholar
    • Export Citation
  • Inall, M. E., T. P. Rippeth, and T. J. Sherwin, 2000: Impact of nonlinear waves on the dissipation of internal tidal energy at a shelf break. J. Geophys. Res., 105, 86878705, https://doi.org/10.1029/1999JC900299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inall, M. E., D. Aleynik, T. J. Boyd, M. Palmer, and J. Sharples, 2011: Internal tide coherence and decay over a wide shelf sea. Geophys. Res. Lett., 38, L23607, https://doi.org/10.1029/2011GL049943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33, 753783, https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, R., I. D. Haigh, S. A. Cunningham, M. E. Inall, M. Porter, and B. I. Moat, 2017: Large-scale forcing of the European Slope Current and associated inflows to the North Sea. Ocean Sci., 13, 315335, https://doi.org/10.5194/os-13-315-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 2017: Time-dependent linear theory for the generation of poleward undercurrents on Eastern boundaries. J. Phys. Oceanogr., 47, 30373059, https://doi.org/10.1175/JPO-D-17-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and J. S. Allen, 1987: Quasi-geostrophic topographically generated mean flow over the continental margin. J. Phys. Oceanogr., 17, 20432064, https://doi.org/10.1175/1520-0485(1987)017<2043:QGTGMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, https://doi.org/10.1016/S1463-5003(03)00011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., and J. Sharples, 2012: Introduction to the Physical and Biological Oceanography of Shelf Seas. Cambridge University Press, 424 pp.

    • Crossref
    • Export Citation
  • Smith, R. L., A. Huyer, J. S. Godfrey, and J. A. Church, 1991: The Leeuwin Current off Western Australia, 1986-1987. J. Phys. Oceanogr., 21, 323345, https://doi.org/10.1175/1520-0485(1991)021<0323:TLCOWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souza, A. J., J. H. Simpson, M. Harikrishnan, and J. Malarkey, 2001: Flow structure and seasonality in the Hebridean slope current. Oceanol. Acta, 24, 6376, https://doi.org/10.1016/S0399-1784(00)01103-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stashchuk, N., and V. Vlasenko, 2017: Bottom trapped internal waves over the Malin Sea continental slope. Deep-Sea Res. I, 119, 6880, https://doi.org/10.1016/j.dsr.2016.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stashchuk, N., V. Vlasenko, P. Hosegood, and W. A. M. Nimmo-Smith, 2017: Tidally induced residual current over the Malin Sea continental slope. Cont. Shelf Res., 139, 2134, https://doi.org/10.1016/j.csr.2017.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 36 36 16
Full Text Views 6 6 4
PDF Downloads 8 8 6

Oceanic Density/Pressure Gradients and Slope Currents

View More View Less
  • 1 National Oceanography Centre, Liverpool, United Kingdom
  • 2 Scottish Association for Marine Science, Oban, United Kingdom
© Get Permissions
Restricted access

Abstract

Eastern boundary currents are some of the most energetic features of the global ocean, contributing significantly to meridional mass, heat, and salt transports. We take a new look at the form of an oceanic slope current in equilibrium with oceanic density gradients. We depth integrate the linearized x and y momentum and continuity equations and assume an equilibrium force balance in the along-slope direction (no along-slope variation in the along-slope flow) and zero cross-slope flow at a coastal boundary. We relate the bottom stress to a bottom velocity via a simple boundary friction law (the precise details are easily modified) and then derive an expression for the slope current velocity by integrating upward including thermal wind shear. This provides an expression for the slope current as a function of depth and of cross-slope coordinate, dependent on the oceanic density field and surface and bottom stresses. This new expression for the slope current allows for more general forms of oceanic density fields than have been treated previously. Wind stress is also now considered. The emphasis here is on understanding the simplified equilibrium force balance rather than the evolution toward that balance. There is a direct relationship between the slope current strength, friction, and along-slope forcing (e.g., wind), and also between the total along-slope forcing and bottom Ekman transport, illustrating that “slippery” bottom boundaries in literature are a direct consequence of unrealistically assuming zero along-slope pressure gradient. We demonstrate the utility of the new expression by comparison with a high-resolution hydrodynamic numerical model.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark E. Inall, mark.inall@sams.ac.uk

Abstract

Eastern boundary currents are some of the most energetic features of the global ocean, contributing significantly to meridional mass, heat, and salt transports. We take a new look at the form of an oceanic slope current in equilibrium with oceanic density gradients. We depth integrate the linearized x and y momentum and continuity equations and assume an equilibrium force balance in the along-slope direction (no along-slope variation in the along-slope flow) and zero cross-slope flow at a coastal boundary. We relate the bottom stress to a bottom velocity via a simple boundary friction law (the precise details are easily modified) and then derive an expression for the slope current velocity by integrating upward including thermal wind shear. This provides an expression for the slope current as a function of depth and of cross-slope coordinate, dependent on the oceanic density field and surface and bottom stresses. This new expression for the slope current allows for more general forms of oceanic density fields than have been treated previously. Wind stress is also now considered. The emphasis here is on understanding the simplified equilibrium force balance rather than the evolution toward that balance. There is a direct relationship between the slope current strength, friction, and along-slope forcing (e.g., wind), and also between the total along-slope forcing and bottom Ekman transport, illustrating that “slippery” bottom boundaries in literature are a direct consequence of unrealistically assuming zero along-slope pressure gradient. We demonstrate the utility of the new expression by comparison with a high-resolution hydrodynamic numerical model.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark E. Inall, mark.inall@sams.ac.uk
Save