• Barceló-Llull, B., E. Pallàs-Sanz, P. Sangrà, A. Martínez-Marrero, S. N. Estrada-Allis, and J. Arístegui, 2017: Ageostrophic secondary circulation in a subtropical intrathermocline eddy. J. Phys. Oceanogr., 47, 11071123, https://doi.org/10.1175/JPO-D-16-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., and Coauthors, 2011: The ERA-Interim Archive: Version 2.0. ERA Rep. Series 1, 23 pp., https://www.ecmwf.int/sites/default/files/elibrary/2011/8174-era-interim-archive-version-20.pdf.

  • Brannigan, L., 2016: Intense submesoscale upwelling in anticyclonic eddies. Geophys. Res. Lett., 43, 33603369, https://doi.org/10.1002/2016GL067926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brannigan, L., D. P. Marshall, A. C. N. Garabato, A. J. G. Nurser, and J. Kaiser, 2017: Submesoscale instabilities in mesoscale eddies. J. Phys. Oceanogr., 47, 30613085, https://doi.org/10.1175/JPO-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011a: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., P. Gaube, M. G. Schlax, J. J. Early, and R. M. Samelson, 2011b: The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334, 328332, https://doi.org/10.1126/science.1208897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, K., R. He, B. S. Powell, G. G. Gawarkiewicz, A. M. Moore, and H. G. Arango, 2014: Data assimilative modeling investigation of Gulf Stream Warm Core Ring interaction with continental shelf and slope circulation. J. Geophys. Res. Oceans, 119, 59685991, https://doi.org/10.1002/2014JC009898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2018: Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 11621167, https://doi.org/10.1073/pnas.1718453115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 1986: Mixed layers in Gulf Stream rings. Dyn. Atmos. Oceans, 10, 129, https://doi.org/10.1016/0377-0265(86)90007-2.

  • Dewar, W. K., and G. R. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 16531667, https://doi.org/10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufois, F., N. J. Hardman-Mountford, J. Greenwood, A. J. Richardson, M. Feng, and R. J. Matear, 2016: Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Sci. Adv., 2, e1600282, https://doi.org/10.1126/sciadv.1600282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Early, J. J., R. M. Samelson, and D. B. Chelton, 2011: The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr., 41, 15351555, https://doi.org/10.1175/2011JPO4601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasham, M. J. R., 1995: Variations in the seasonal cycle of biological production in subarctic oceans: A model sensitivity analysis. Deep-Sea Res. I, 42, 11111149, https://doi.org/10.1016/0967-0637(95)00054-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasham, M. J. R., H. W. Ducklow, and S. M. McKelvie, 1990: A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res., 48, 591639, https://doi.org/10.1357/002224090784984678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennel, K., J. Wilkin, J. Levin, J. Moisan, J. O’Reilly, and D. Haidvogel, 2006: Nitrogen cycling in the Middle Atlantic bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochem. Cycles, 20, GB3007, https://doi.org/10.1029/2005GB002456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1979: A simple model for the structure of warm and cold core rings. J. Geophys. Res., 84, 781785, https://doi.org/10.1029/JC084iC02p00781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., and R. P. Mied, 1985: Frictionally induced circulations and spin down of a warm-core ring. J. Geophys. Res., 90, 89178927, https://doi.org/10.1029/JC090iC05p08917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franks, P. J. S., J. S. Wroblewski, and G. R. Flierl, 1986: Prediction of phytoplankton growth in response to the frictional decay of a warm-core ring. J. Geophys. Res., 91, 76037610, https://doi.org/10.1029/JC091iC06p07603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrichs, M. A. M., and Coauthors, 2019: Ocean circulation causes strong variability in the Mid-Atlantic bight nitrogen budget. J. Geophys. Res. Oceans, 124, 113134, https://doi.org/10.1029/2018JC014424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfield, N., and D. L. Evans, 1987: Shelf water entrainment by Gulf Stream warm-core rings. J. Geophys. Res., 92, 13 00313 012, https://doi.org/10.1029/JC092IC12P13003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, P. G. Strutton, and M. J. Behrenfeld, 2013: Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans, 118, 63496370, https://doi.org/10.1002/2013JC009027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. J. McGillicuddy, D. B. Chelton, M. J. Behrenfeld, and P. G. Strutton, 2014: Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans, 119, 81958220, https://doi.org/10.1002/2014JC010111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, https://doi.org/10.1175/JPO-D-14-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gawarkiewicz, G. G., F. Bahr, R. C. Beardsley, and K. H. Brink, 2001: Interaction of a slope eddy with the shelfbreak front in the middle Atlantic bight. J. Phys. Oceanogr., 31, 27832796, https://doi.org/10.1175/1520-0485(2001)031<2783:IOASEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys., 227, 35953624, https://doi.org/10.1016/j.jcp.2007.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, R., K. Chen, T. Moore, and M. Li, 2010: Mesoscale variations of sea surface temperature and ocean color patterns at the Mid-Atlantic Bight shelfbreak. Geophys. Res. Lett., 37, L09607, https://doi.org/10.1029/2010GL042658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofmann, E. E., and Coauthors, 2011: Modeling the dynamics of continental shelf carbon. Annu. Rev. Mar. Sci., 3, 93122, https://doi.org/10.1146/annurev-marine-120709-142740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J., 2004: An Introduction to Dynamic Meteorology. 4th ed., Academic Press, 535 pp.

  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, https://doi.org/10.1002/qj.49710042520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, https://doi.org/10.1146/annurev.fl.14.010182.001023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., J. K. B. Bishop, and O. B. Brown, 1992: Observations of offshore shelf-water transport induced by a Warm-Core Ring. Deep-Sea Res., 39A, S97S113, https://doi.org/10.1016/S0198-0149(11)80007-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishi, M. J., and Coauthors, 2007: NEMURO—A lower trophic level model for the North Pacific marine ecosystem. Ecol. Modell., 202, 1225, https://doi.org/10.1016/j.ecolmodel.2006.08.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koszalka, I., A. Bracco, J. C. McWilliams, and A. Provenzale, 2009: Dynamics of wind-forced coherent anticyclones in the open ocean. J. Geophys. Res., 114, C08011, https://doi.org/10.1029/2009jc005388.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C. M., and K. H. Brink, 2010: Observations of storm-induced mixing and Gulf Stream ring incursion over the southern flank of Georges bank: Winter and summer 1997. J. Geophys. Res., 115, C08008, https://doi.org/10.1029/2009JC005706.

    • Search Google Scholar
    • Export Citation
  • Lehahn, Y., F. d’Ovidio, M. Lévy, Y. Amitai, and E. Heifetz, 2011: Long range transport of a quasi isolated chlorophyll patch by an Agulhas ring. Geophys. Res. Lett., 38, L16610, https://doi.org/10.1029/2011GL048588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lima, I. D., and S. C. Doney, 2004: A three-dimensional, multinutrient, and size-structured ecosystem model for the North Atlantic. Global Biogeochem. Cycles, 18, GB3019, https://doi.org/10.1029/2003GB002146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., L. N. Thomas, and A. Tandon, 2008: Comment on “Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms.” Science, 320, 448, https://doi.org/10.1126/science.1152111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A. P., and K. J. Richards, 2001: Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Res. II, 48, 757773, https://doi.org/10.1016/S0967-0645(00)00096-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., J. Molemaker, A. F. Shchepetkin, F. Colas, J. C. McWilliams, and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, https://doi.org/10.1016/j.ocemod.2010.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., 2015: Formation of intrathermocline lenses by eddy–wind interaction. J. Phys. Oceanogr., 45, 606612, https://doi.org/10.1175/JPO-D-14-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., 2016: Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci., 8, 125159, https://doi.org/10.1146/annurev-marine-010814-015606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., and A. R. Robinson, 1997: Eddy-induced nutrient supply and new production in the Sargasso sea. Deep-Sea Res. I, 44, 14271450, https://doi.org/10.1016/S0967-0637(97)00024-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., and Coauthors, 2007: Eddy/Wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 10211026, https://doi.org/10.1126/science.1136256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., J. R. Ledwell, and L. A. Anderson, 2008: Response to comment on “Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms.” Science, 320, 448, https://doi.org/10.1126/science4.1148974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., L. P. Graves, and M. T. Montgomery, 2003: A formal theory for vortex Rossby waves and vortex Evolution. Geophys. Astrophys. Fluid Dyn., 97, 275309, https://doi.org/10.1080/0309192031000108698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, R. L., 1970: Cyclonic ring spin down in the North Atlantic. Ph.D. dissertation, Texas A&M University, 106 pp.

  • Nardelli, B. B., 2013: Vortex waves and vertical motion in a mesoscale cyclonic eddy. J. Geophys. Res. Oceans, 118, 56095624, https://doi.org/10.1002/jgrc.20345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, D. M., and Coauthors, 1985: Distribution and composition of biogenic particulate matter in a Gulf Stream warm-core ring. Deep-Sea Res., 32A, 13471369, https://doi.org/10.1016/0198-0149(85)90052-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, D. M., J. J. McCarthy, T. M. Joyce, and H. W. Ducklow, 1989: Enhanced near-surface nutrient availability and new production resulting from the frictional decay of a Gulf Stream warm-core ring. Deep-Sea Res., 36A, 705714, https://doi.org/10.1016/0198-0149(89)90146-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 1969: On the Ekman divergence in an oceanic jet. J. Geophys. Res., 74, 70487052, https://doi.org/10.1029/JC074I028P07048.

  • Okubo, A., 1971: Oceanic diffusion diagrams. Deep-Sea Res. Oceanogr. Abstr., 18, 789802, https://doi.org/10.1016/0011-7471(71)90046-5.

  • Olson, D. B., 1991: Rings in the ocean. Annu. Rev. Earth Planet. Sci., 19, 283311, https://doi.org/10.1146/annurev.ea.19.050191.001435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, D. B., R. W. Schmitt, M. Kennelly, and T. M. Joyce, 1985: A two-layer diagnostic model of the long-term physical evolution of warm-core ring 82B. J. Geophys. Res., 90, 88138822, https://doi.org/10.1029/JC090iC05p08813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., 2012: Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellite. J. Climate, 25, 15441569, https://doi.org/10.1175/JCLI-D-11-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oschlies, A., 2002: Can eddies make ocean deserts bloom? Global Biogeochem. Cycles, 16, 1106, https://doi.org/10.1029/2001GB001830.

  • Pallàs-Sanz, E., and Á. Viúdez, 2005: Diagnosing mesoscale vertical motion from horizontal velocity and density data. J. Phys. Oceanogr., 35, 17441762, https://doi.org/10.1175/JPO2784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pallàs-Sanz, E., T. M. S. Johnston, and D. L. Rudnick, 2010: Frontal dynamics in a California current system shallow front: 2. Mesoscale vertical velocity. J. Geophys. Res, 115, C12068, https://doi.org/10.1029/2010JC006474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascual, A., S. Ruiz, B. Buongiorno Nardelli, S. Guinehut, D. Iudicone, and J. Tintoré, 2015: Net primary production in the Gulf Stream sustained by quasi-geostrophic vertical exchanges. Geophys. Res. Lett., 42, 441449, https://doi.org/10.1002/2014GL062569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pietri, A., P. Testor, V. Echevin, A. Chaigneau, L. Mortier, G. Eldin, and C. Grados, 2013: Finescale vertical structure of the upwelling system off southern Peru as observed from Glider data. J. Phys. Oceanogr., 43, 631646, https://doi.org/10.1175/JPO-D-12-035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., 1970: On the generation by winds of inertial waves in the ocean. Deep-Sea Res. Oceanogr. Abstr., 17, 795812, https://doi.org/10.1016/0011-7471(70)90042-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and L. A. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22, 609625, https://doi.org/10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, T. M., C. V. W. Lewis, E. N. Curchitser, D. B. Haidvogel, A. J. Hermann, and E. L. Dobbins, 2006: Results from a three-dimensional, nested biological-physical model of the California Current System and comparisons with statistics from satellite imagery. J. Geophys. Res., 111, C07018, https://doi.org/10.1029/2004JC002506.

    • Search Google Scholar
    • Export Citation
  • Ryan, J. P., J. A. Yorder, and D. W. Townsend, 2001: Influence of a Gulf Stream warm-core ring on water mass and chlorophyll distributions along the southern flank of Georges Bank. Deep-Sea Res. II, 48, 159178, https://doi.org/10.1016/S0967-0645(00)00117-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., A. Kirincich, S. Lentz, and M. Sundermeyer, 2016: Investigating the eddy diffusivity concept in the coastal ocean. J. Phys. Oceanogr., 46, 22012218, https://doi.org/10.1175/JPO-D-16-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, K., and Y. Hiroe, 2002: Mechanism of nutrient supply to warm-core ring off Sanriku, Japan. J. Oceanogr., 58, 683690, https://doi.org/10.1023/A:1022894323424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schink, D., J. McCarthy, T. Joyce, G. Flierl, P. Wiebe, and D. Kester, 1982: Multidisciplinary program to study warm core rings. Eos, Trans. Amer. Geophys. Union, 63, 834835, https://doi.org/10.1029/EO063i044p00834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scemitz, J. E., and A. C. Vastano, 1975: Entrainment and diffusion in a Gulf Stream cyclonic ring. J. Phys. Oceanogr., 5, 9397, https://doi.org/10.1175/1520-0485(1975)005<0093:EADIAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, B. D., 1981: Hydrological structure and phytoplankton distribution in the region of a warm-core eddy in the Tasman sea. Aust. J. Mar. Freshwater Res., 32, 479492, https://doi.org/10.1071/MF9810479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., and Coauthors, 2015: The LatMix summer campaign: Submesoscale stirring in the upper ocean. Bull. Amer. Meteor. Soc., 96, 12571279, https://doi.org/10.1175/BAMS-D-14-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, and S. Nylund, 2018: Observing finescale oceanic velocity structure with an autonomous Nortek acoustic Doppler current profiler. J. Atmos. Oceanic Technol., 35, 411427, https://doi.org/10.1175/JTECH-D-17-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shearman, R. K., J. A. Barth, J. S. Allen, and R. L. Haney, 2000: Diagnosis of the three-dimensional circulation in mesoscale features with large Rossby number. J. Phys. Oceanogr., 30, 26872709, https://doi.org/10.1175/1520-0485(2001)031<2687:DOTTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siedlecki, S. A., N. S. Banas, K. A. Davis, S. Giddings, B. M. Hickey, P. MacCready, T. Connolly, and S. Geier, 2015: Seasonal and interannual oxygen variability on the Washington and Oregon continental shelves. J. Geophys. Res. Oceans, 120, 608633, https://doi.org/10.1002/2014JC010254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegel, D. A., P. Peterson, D. J. McGillicuddy, S. Maritorena, and N. B. Nelson, 2011: Bio-optical footprints created by mesoscale eddies in the Sargasso Sea. Geophys. Res. Lett., 38, L13608, https://doi.org/10.1029/2011GL047660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. C., and K. S. Baker, 1985: Spatial and temporal patterns in pigment biomass in Gulf Stream warm-core ring 82B and its environs. J. Geophys. Res., 90, 88598870, https://doi.org/10.1029/JC090iC05p08859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1965: Interaction of a uniform wind stress with a geostrophic vortex. Deep-Sea Res. Oceanogr. Abstr., 12, 355367, https://doi.org/10.1016/0011-7471(65)90007-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tintoré, J., D. Gomis, S. Alonso, and G. Parrilla, 1991: Mesoscale dynamics and vertical motion in the Alborán Sea. J. Phys. Oceanogr., 21, 811823, https://doi.org/10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tranter, D. J., R. R. Parker, and G. R. Cresswell, 1980: Are warm-core eddies unproductive? Nature, 284, 540542, https://doi.org/10.1038/284540a0.

  • Viúdez, Á., 2018: Two modes of vertical velocity in subsurface mesoscale eddies. J. Geophys. Res. Oceans, 123, 37053722, https://doi.org/10.1029/2017JC013735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez, Á., and D. G. Dritschel, 2004: Potential vorticity and the quasigeostrophic and semigeostrophic mesoscale vertical velocity. J. Phys. Oceanogr., 34, 865887, https://doi.org/10.1175/1520-0485(2004)034<0865:PVATQA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez, Á., J. Tintoré, and R. L. Haney, 1996: About the nature of the generalized omega equation. J. Atmos. Sci., 53, 787795, https://doi.org/10.1175/1520-0469(1996)053<0787:ATNOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and L. N. Thomas, 2017: Ekman transport in balanced currents with curvature. J. Phys. Oceanogr., 47, 11891203, https://doi.org/10.1175/JPO-D-16-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, https://doi.org/10.1175/BAMS-85-2-195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., and G. G. Gawarkiewicz, 2015: Dynamics of the direct intrusion of Gulf Stream ring water onto the Mid-Atlantic Bight shelf. Geophys. Res. Lett., 42, 76877695, https://doi.org/10.1002/2015GL065530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., D. J. McGillicuddy, and G. G. Gawarkiewicz, 2013: Is biological productivity enhanced at the New England shelfbreak front? J. Geophys. Res. Oceans, 118, 517535, https://doi.org/10.1002/jgrc.20068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., B. Qiu, P. Klein, and S. Travis, 2019: The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nat. Commun., 10, 2838, https://doi.org/10.1038/s41467-019-10883-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 94 94 13
Full Text Views 50 50 7
PDF Downloads 63 63 11

On the Vertical Velocity and Nutrient Delivery in Warm Core Rings

View More View Less
  • 1 Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • 2 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • 3 Department of Physical Oceanography, Ensenada Center for Scientific Research and Higher Education, Ensenada, Mexico
© Get Permissions
Restricted access

Abstract

We examine various contributions to the vertical velocity field within large mesoscale eddies by analyzing multiple solutions to an idealized numerical model of a representative anticyclonic warm core Gulf Stream ring. Initial conditions are constructed to reproduce the observed density and nutrient profiles collected during the Warm Core Rings Program. The contributions to vertical fluxes diagnosed from the numerical simulations are compared against a divergence-based, semidiagnostic equation and a generalized omega equation to better understand the dynamics of the vertical velocity field. Frictional decay alone is found to be ineffective in raising isopycnals and transporting nutrients to the upper ocean. With representative wind forcing, the magnitude of vorticity gradient–induced Ekman pumping is not necessarily larger than the current-induced counterpart on a time scale relevant to ecosystem response. Under realistic forcing conditions, strain deformation can perturb the ring to be noncircular and induce vertical velocities much larger than the Ekman vertical velocities. Nutrient budget diagnosis, together with analysis of the relative magnitudes of the various types of vertical fluxes, allows us to describe the time-scale dependence of nutrient delivery. At time scales that are relevant to individual phytoplankton (from hours to days), the magnitudes of nutrient flux by Ekman velocities and deformation-induced velocities are comparable. Over the life span of a typical warm core ring, which can span multiple seasons, surface current–induced Ekman pumping is the most effective mechanism in upper-ocean nutrient enrichment because of its persistence in the center of anticyclones regardless of the direction of the wind forcing.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ke Chen, kchen@whoi.edu

Abstract

We examine various contributions to the vertical velocity field within large mesoscale eddies by analyzing multiple solutions to an idealized numerical model of a representative anticyclonic warm core Gulf Stream ring. Initial conditions are constructed to reproduce the observed density and nutrient profiles collected during the Warm Core Rings Program. The contributions to vertical fluxes diagnosed from the numerical simulations are compared against a divergence-based, semidiagnostic equation and a generalized omega equation to better understand the dynamics of the vertical velocity field. Frictional decay alone is found to be ineffective in raising isopycnals and transporting nutrients to the upper ocean. With representative wind forcing, the magnitude of vorticity gradient–induced Ekman pumping is not necessarily larger than the current-induced counterpart on a time scale relevant to ecosystem response. Under realistic forcing conditions, strain deformation can perturb the ring to be noncircular and induce vertical velocities much larger than the Ekman vertical velocities. Nutrient budget diagnosis, together with analysis of the relative magnitudes of the various types of vertical fluxes, allows us to describe the time-scale dependence of nutrient delivery. At time scales that are relevant to individual phytoplankton (from hours to days), the magnitudes of nutrient flux by Ekman velocities and deformation-induced velocities are comparable. Over the life span of a typical warm core ring, which can span multiple seasons, surface current–induced Ekman pumping is the most effective mechanism in upper-ocean nutrient enrichment because of its persistence in the center of anticyclones regardless of the direction of the wind forcing.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ke Chen, kchen@whoi.edu
Save