• Chang, K.-I., N. G. Hogg, M.-S. Suk, S.-K. Byun, Y.-G. Kim, and K. Kim, 2002: Mean flow and variability in the southwestern East Sea. Deep-Sea Res. I, 49, 22612279, https://doi.org/10.1016/S0967-0637(02)00120-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K.-I., and Coauthors, 2004: Circulation and currents in the southwestern East/Japan Sea: Overview and review. Prog. Oceanogr., 61, 105156, https://doi.org/10.1016/j.pocean.2004.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K.-I., K. Kim, Y.-B. Kim, W. J. Teague, J. C. Lee, and J.-H. Lee, 2009: Deep flow and transport through the Ulleung Interplain Gap in the southwestern East/Japan Sea. Deep-Sea Res. I, 56, 6172, https://doi.org/10.1016/j.dsr.2008.07.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K.-I., C.-I. Zhang, C. Park, D.-J. Kang, S.-J. Ju, S.-H. Lee, and M. Wimbush, 2016: Oceanography of the East Sea (Japan Sea). Springer, 460 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, Y. K., and K. Kim, 1998: Structure of the Korea strait bottom cold water and its seasonal variation in 1991. Cont. Shelf Res., 18, 791804, https://doi.org/10.1016/S0278-4343(98)00013-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, Y. K., G. H. Seo, B. J. Choi, S. Kim, Y. G. Kim, Y. H. Youn, and E. P. Dever, 2009: Connectivity among straits of the northwest Pacific marginal seas. J. Geophys. Res. Oceans, 114, C06018, https://doi.org/10.1029/2008JC005218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, Y. L., and T. Senjyu, 2010: Interdecadal oscillations in the Japan Sea proper water related to the Arctic Oscillation. J. Oceanogr., 66, 337348, https://doi.org/10.1007/s10872-010-0030-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and R. Marsh, 2010: Observing and modeling changes in the Atlantic MOC. Wiley Interdiscip. Rev.: Climate Change, 1, 180191, https://doi.org/10.1002/wcc.22.

    • Search Google Scholar
    • Export Citation
  • Fukudome, K., J. H. Yoon, A. Ostrovskii, T. Takikawa, and I. S. Han, 2010: Seasonal volume transport variation in the Tsushima Warm Current through the Tsushima Straits from 10 years of ADCP observations. J. Oceanogr., 66, 539551, https://doi.org/10.1007/s10872-010-0045-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, M., I. Kamenkovich, T. Radko, and W. E. Johns, 2013: Relationship between air–sea density flux and isopycnal meridional overturning circulation in a warming climate. J. Climate, 26, 26832699, https://doi.org/10.1175/JCLI-D-11-00682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, S., N. Hirose, N. Usui, and Y. Miyazawa, 2016: Multi-model ensemble estimation of volume transport through the straits of the East/Japan Sea. Ocean Dyn., 66, 5976, https://doi.org/10.1007/s10236-015-0896-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichiye, T., 1984: Some problems of circulation and hydrography of the Japan Sea and the Tsushima current. Ocean Hydrodynamics of the Japan and East China Seas, Elsevier, 15–54.

    • Crossref
    • Export Citation
  • Kamenkovich, I., and T. Radko, 2011: Role of the Southern Ocean in setting the Atlantic stratification and meridional overturning circulation. J. Mar. Res., 69, 277308, https://doi.org/10.1357/002224011798765286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D.-J., S. Park, Y.-G. Kim, K. Kim, and K.-R. Kim, 2003: A Moving-Boundary Box Model (MBBM) for oceans in change: An application to the East/Japan Sea. Geophys. Res. Lett., 30, 1299, https://doi.org/10.1029/2002GL016486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, C.-H., and J.-H. Yoon, 1999: A numerical modeling of the upper and the intermediate layer circulation in the East Sea. J. Oceanogr., 55, 327345, https://doi.org/10.1023/A:1007837212219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K., and J. Chung, 1984: On the salinity-minimum and dissolved oxygen-maximum layer in the East Sea (Sea of Japan). Elsevier Oceanogr. Ser., 39, 5565, https://doi.org/10.1016/S0422-9894(08)70290-3.

    • Search Google Scholar
    • Export Citation
  • Kim, K., K. R. Kim, Y. G. Kim, Y. K. Cho, D. J. Kang, M. Takematsu, and Y. Volkov, 2004: Water masses and decadal variability in the East Sea (Sea of Japan). Prog. Oceanogr., 61, 157174, https://doi.org/10.1016/j.pocean.2004.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K., K.-I. Chang, D.-J. Kang, Y. H. Kim, and J.-H. Lee, 2008: Review of recent findings on the water masses and circulation in the East Sea (Sea of Japan). J. Oceanogr., 64, 721735, https://doi.org/10.1007/s10872-008-0061-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K. R., G. Kim, K. Kim, V. Lobanov, V. Ponomarev, and A. Salyuk, 2002: A sudden bottom-water formation during the severe winter 2000–2001: The case of the East/Japan Sea. Geophys. Res. Lett., 29, 1234, https://doi.org/10.1029/2001GL014498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-G., and K. Kim, 1999: Intermediate waters in the East/Japan Sea. J. Oceanogr., 55, 123132, https://doi.org/10.1023/A:1007877610531.

  • Kim, Y. H., Y. B. Kim, K. Kim, K. I. Chang, S. J. Lyu, Y. K. Cho, and W. J. Teague, 2006: Seasonal variation of the Korea strait bottom cold water and its relation to the bottom current. Geophys. Res. Lett., 33, L24604, https://doi.org/10.1029/2006GL027625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, H. S., and C.-H. Kim, 2006: Water mass formation variability in the intermediate layer of the East Sea. Ocean Sci. J., 41, 255260, https://doi.org/10.1007/BF03020629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyazaki, M., 1953: On the water masses of the Japan Sea. Bull. Hokkaido Reg. Fish. Res. Lab., 7, 165.

  • Moriyasu, S., 1972: The Tsushima Current. Kuroshio: Its Physical Aspects, H. Stommel and K. Yoshida, Eds., University of Tokyo Press, 353–369.

  • Nam, S., S. T. Yoon, J. H. Park, Y. H. Kim, and K. I. Chang, 2016: Distinct characteristics of the intermediate water observed off the east coast of Korea during two contrasting years. J. Geophys. Res. Oceans, 121, 50505068, https://doi.org/10.1002/2015JC011593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, S., and S. Nam, 2018: EC1, mooring time-series since 1996. SEANOE, accessed 5 December 2018, https://doi.org/10.17882/58134.

    • Crossref
    • Export Citation
  • Noh, Y., and C. Jang, 1999: Large eddy simulation of open ocean deep convection with application to the deep water formation in the East Sea (Japan Sea). J. Oceanogr., 55, 347367, https://doi.org/10.1023/A:1007889229058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., and B. Lim, 2017: A new perspective on origin of the East Sea Intermediate water: Observations of Argo floats. Prog. Oceanogr., 160, 213224, https://doi.org/10.1016/J.POCEAN.2017.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., and S. Nam, 2018: Interannual variability of winter precipitation linked to upper ocean heat content off the east coast of Korea. Int. J. Climatol., 38, e1266e1273, https://doi.org/10.1002/joc.5354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, Y.-G., K.-H. Oh, K.-I. Chang, and M.-S. Suk, 2004: Intermediate level circulation of the southwestern part of the East/Japan Sea estimated from autonomous isobaric profiling floats. Geophys. Res. Lett., 31, L13213, https://doi.org/10.1029/2004GL020424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, Y. G., A. Choi, Y. H. Kim, H. S. Min, J. H. Hwang, and S. H. Choi, 2010: Direct flows from the Ulleung Basin into the Yamato Basin in the East/Japan Sea. Deep-Sea Res. I, 57, 731738, https://doi.org/10.1016/j.dsr.2010.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, Y. G., J. H. Park, H. J. Lee, H. S. Min, and S. D. Kim, 2013: The effects of geothermal heating on the East/Japan Sea circulation. J. Geophys. Res. Oceans, 118, 18931905, https://doi.org/10.1002/jgrc.20161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senjyu, T., H.-R. Shin, J.-H. Yoon, Z. Nagano, H.-S. An, S.-K. Byun, and C.-K. Lee, 2005: Deep flow field in the Japan/East Sea as deduced from direct current measurements. Deep-Sea Res. II, 52, 17261741, https://doi.org/10.1016/J.DSR2.2003.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seung, Y. H., 2005: Abyssal currents driven by a local wind forcing through deep mixed layer: Implication to the East Sea. Ocean Sci. J., 40, 101107, https://doi.org/10.1007/BF03028590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seung, Y.-H., and J.-H. Yoon, 1995: Some features of winter convection in the Japan Sea. J. Oceanogr., 51, 6173, https://doi.org/10.1007/BF02235936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104, https://doi.org/10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, https://doi.org/10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takematsu, M., Z. Nagano, A. G. Ostrovski, K. Kim, and Y. Volkov, 1999: Direct measurements of deep currents in the northern Japan Sea. J. Oceanogr., 55, 207216, https://doi.org/10.1023/A:1007842013257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takikawa, T., J. H. Yoon, and K. D. Cho, 2005: The Tsushima warm current through Tsushima Straits estimated from ferryboat ADCP data. J. Phys. Oceanogr., 35, 11541168, https://doi.org/10.1175/JPO2742.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L., and Coauthors, 2006: Japan/East Sea water masses and their relation to the sea’s circulation. Oceanography, 19, 3249, https://doi.org/10.5670/oceanog.2006.42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., V. Lobanov, V. Ponomarev, A. Salyuk, P. Tishchenko, I. Zhabin, and S. Riser, 2003: Deep convection and brine rejection in the Japan Sea. Geophys. Res. Lett., 30, 1159, https://doi.org/10.1029/2002GL016451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, K., 2014: Formation of bottom water and its variability in the northwestern part of the Sea of Japan. J. Geophys. Res. Oceans, 119, 20812094, https://doi.org/10.1002/2013JC009456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teague, W., and Coauthors, 2005: Observed deep circulation in the Ulleung Basin. Deep-Sea Res. II, 52, 18021826, https://doi.org/10.1016/J.DSR2.2003.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2002: What is the thermohaline circulation? Science, 298, 11791181, https://doi.org/10.1126/science.1079329.

  • Yoon, J.-H., K. Abe, T. Ogata, and Y. Wakamatsu, 2005: The effects of wind-stress curl on the Japan/East Sea circulation. Deep-Sea Res. II, 52, 18271844, https://doi.org/10.1016/J.DSR2.2004.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, S. T., and Coauthors, 2018: Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world. Sci. Rep., 8, 1576, https://doi.org/10.1038/s41598-018-19952-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshikawa, Y., T. Awaji, and K. Akitomo, 1999: Formation and circulation processes of intermediate water in the Japan Sea. J. Phys. Oceanogr., 29, 17011722, https://doi.org/10.1175/1520-0485(1999)029<1701:FACPOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, J. Y., L. Magaard, K. Kim, C. W. Shin, C. Kim, and S. K. Byun, 2004: Spatial and temporal variability of the North Korean Cold Water leading to the near-bottom cold water intrusion in Korea Strait. Prog. Oceanogr., 60, 99131, https://doi.org/10.1016/j.pocean.2003.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 81 81 35
Full Text Views 23 23 15
PDF Downloads 19 19 14

Decadal Changes in Meridional Overturning Circulation in the East Sea (Sea of Japan)

View More View Less
  • 1 School of Earth and Environmental Sciences, and Research Institute of Oceanography, Seoul National University, Seoul, South Korea
  • 2 Ocean Circulation and Climate Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
  • 3 School of Earth and Environmental Sciences, and Research Institute of Oceanography, Seoul National University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

Meridional overturning circulation (MOC) is vital to distributing heat, freshwater, and dissolved matter in semienclosed deep marginal seas such as the East Sea (ES) (Sea of Japan). As our understanding of the ES MOC remains incomplete, we attempted to fill this research gap. We analyzed the ES MOC and its decadal change (1993–2012), employing Hybrid Coordinate Ocean Model (HYCOM) global reanalysis. We found that the ES MOC, consisting of two counterrotating overturning cells in the late 1990s, changed into a single full-depth cell in the 2000s and reverted to two cells in the 2010s. The decadal change relates to weakening of the southward western boundary current at the intermediate layer and northward eastern boundary currents at the deep abyssal layer. We propose that surface warming and salinification favored reduced intermediate water formation and enhanced bottom water formation in the northwestern ES in the 2000s and were, therefore, key to the decadal change. Conditions unfavorable to intermediate water formation and favorable to bottom water formation in the winters of the 2000s, compared with the late 1990s, enhanced northward (westward) Ekman transport in the southern (northeastern) ES, successive advection of surface warm, saline water into water formation areas, and air–sea heat and freshwater exchanges linked to the January Arctic Oscillation. Our results indicated that the ES MOC is sensitive to both external atmospheric forcing and internal ES processes, which have implications for significant changes in the response of other marginal seas and global oceans to future climate variability.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: SungHyun Nam, namsh@snu.ac.kr

Abstract

Meridional overturning circulation (MOC) is vital to distributing heat, freshwater, and dissolved matter in semienclosed deep marginal seas such as the East Sea (ES) (Sea of Japan). As our understanding of the ES MOC remains incomplete, we attempted to fill this research gap. We analyzed the ES MOC and its decadal change (1993–2012), employing Hybrid Coordinate Ocean Model (HYCOM) global reanalysis. We found that the ES MOC, consisting of two counterrotating overturning cells in the late 1990s, changed into a single full-depth cell in the 2000s and reverted to two cells in the 2010s. The decadal change relates to weakening of the southward western boundary current at the intermediate layer and northward eastern boundary currents at the deep abyssal layer. We propose that surface warming and salinification favored reduced intermediate water formation and enhanced bottom water formation in the northwestern ES in the 2000s and were, therefore, key to the decadal change. Conditions unfavorable to intermediate water formation and favorable to bottom water formation in the winters of the 2000s, compared with the late 1990s, enhanced northward (westward) Ekman transport in the southern (northeastern) ES, successive advection of surface warm, saline water into water formation areas, and air–sea heat and freshwater exchanges linked to the January Arctic Oscillation. Our results indicated that the ES MOC is sensitive to both external atmospheric forcing and internal ES processes, which have implications for significant changes in the response of other marginal seas and global oceans to future climate variability.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: SungHyun Nam, namsh@snu.ac.kr
Save