• Ahn, J. H., S. B. Grant, C. Q. Surbeck, P. M. DiGiacomo, N. P. Nezlin, and S. Jiang, 2005: Coastal water quality impact of stormwater runoff from an urban watershed in southern California. Environ. Sci. Technol., 39, 59405953, https://doi.org/10.1021/es0501464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archfield, S. A., and R. M. Vogel, 2010: Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments. Water Resour. Res., 46, W10513, https://doi.org/10.1029/2009WR008481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J. A., and S. J. Lentz, 2002: The inner shelf response to wind-driven upwelling and downwelling. J. Phys. Oceanogr., 32, 21712193, https://doi.org/10.1175/1520-0485(2002)032<2171:TISRTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, B. J., L. A. Levin, F. J. Fodrie, and P. A. McMillan, 2007: Complex larval connectivity patterns among marine invertebrate populations. Proc. Natl. Acad. Sci. USA, 104, 32673272, https://doi.org/10.1073/pnas.0611651104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104, 76497666, https://doi.org/10.1029/98JC02622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. A., J. H. MacMahan, A. J. H. M. Reniers, and E. B. Thornton, 2015: Field observations of surf zone–inner shelf exchange on a rip-channeled beach. J. Phys. Oceanogr., 45, 23392355, https://doi.org/10.1175/JPO-D-14-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M., Y. Uchiyama, J. McWilliams, and C. Hill-Lindsay, 2012: Modeling semidiurnal internal tide variability in the Southern California bight. J. Phys. Oceanogr., 42, 6277, https://doi.org/10.1175/2011JPO4597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., and J. A. Barth, 2006: The relative importance of wind strength and along-shelf bathymetric variations on the separation of a coastal upwelling jet. J. Phys. Oceanogr., 36, 412425, https://doi.org/10.1175/JPO2867.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castelle, B., and G. Coco, 2013: Surf zone flushing on embayed beaches. Geophys. Res. Lett., 40, 22062210, https://doi.org/10.1002/grl.50485.

  • Chadwick, D. B., and J. L. Largier, 1999: Tidal exchange at the bay-ocean boundary. J. Geophys. Res., 104, 29 90129 924, https://doi.org/10.1029/1999JC900165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., A. Gizolme, and C. Grados, 2008: Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79, 106119, https://doi.org/10.1016/j.pocean.2008.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauhajre, D. P., and J. C. McWilliams, 2019: Nearshore Lagrangian connectivity: Submesoscale influence and resolution sensitivity. J. Geophys. Res. Oceans, 124, 51805204, https://doi.org/10.1029/2019JC014943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauhajre, D. P., J. C. McWilliams, and Y. Uchiyama, 2017: Submesoscale coherent structures on the continental shelf. J. Phys. Oceanogr., 47, 29492976, https://doi.org/10.1175/JPO-D-16-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekman, V. W.,1905: On the influence of the Earth’s rotation on ocean currents. Ark. Mat. Astron. Fys., 2, 152.

  • Estrade, P., P. Marchesiello, D. Verdière, A. Colin, and C. Roy, 2008: Cross-shelf structure of coastal upwelling: A two-dimensional extension of Ekman’s theory and a mechanism for inner shelf upwelling shut down. J. Mar. Res., 66, 589616, https://doi.org/10.1357/002224008787536790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., 2012: Scaling surf zone turbulence. Geophys. Res. Lett., 39, L18613, https://doi.org/10.1029/2012GL052970.

  • Feddersen, F., 2014: The generation of surfzone eddies in a strong alongshore current. J. Phys. Oceanogr., 44, 600617, https://doi.org/10.1175/JPO-D-13-051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., R. Guza, S. Elgar, and T. Herbers, 1998: Alongshore momentum balances in the nearshore. J. Geophys. Res., 103, 15 66715 676, https://doi.org/10.1029/98JC01270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., M. Olabarrieta, R. T. Guza, D. Winters, B. Raubenheimer, and S. Elgar, 2016: Observations and modeling of a tidal inlet dye tracer plume. J. Geophys. Res. Oceans, 121, 78197844, https://doi.org/10.1002/2016JC011922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fewings, M., S. J. Lentz, and J. Fredericks, 2008: Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf. J. Phys. Oceanogr., 38, 23582378, https://doi.org/10.1175/2008JPO3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flather, R., 1976: A tidal model of the north-west European continental shelf. Mem. Soc. Roy. Sci. Liege., 10, 141164.

  • Gan, J., and J. S. Allen, 2002: A modeling study of shelf circulation off Northern California in the region of the coastal ocean dynamics experiment: Response to relaxation of upwelling winds. J. Geophys. Res., 107, 3123, https://doi.org/10.1029/2000JC000768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganju, N. K., S. J. Lentz, A. R. Kirincich, and J. T. Farrar, 2011: Complex mean circulation over the inner shelf south of Martha’s Vineyard revealed by observations and a high-resolution model. J. Geophys. Res., 116, C10036, https://doi.org/10.1029/2011JC007035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., and P. MacCready, 2014: The estuarine circulation. Annu. Rev. Fluid Mech., 46, 175197, https://doi.org/10.1146/annurev-fluid-010313-141302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giddings, S. N., and Coauthors, 2014: Hindcasts of potential harmful algal bloom transport pathways on the Pacific Northwest coast. J. Geophys. Res. Oceans, 119, 24392461, https://doi.org/10.1002/2013JC009622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, S. B., J. H. Kim, B. H. Jones, S. A. Jenkins, J. Wasyl, and C. Cudaback, 2005: Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets. J. Geophys. Res., 110, C10025, https://doi.org/10.1029/2004JC002401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimes, D. J., F. Feddersen, S. N. Giddings, and G. Pawlak, 2020: Cross-shore deformation of a surfzone-released dye plume by an internal tide on the inner shelf. J. Phys. Oceanogr., 50, 3554, https://doi.org/10.1175/JPO-D-19-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hally-Rosendahl, K., and F. Feddersen, 2016: Modeling surfzone to inner-shelf tracer exchange. J. Geophys. Res. Oceans, 121, 40074025, https://doi.org/10.1002/2015JC011530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hally-Rosendahl, K., F. Feddersen, and R. Guza, 2014: Cross-shore tracer exchange between the surfzone and inner-shelf. J. Geophys. Res. Oceans, 119, 43674388, https://doi.org/10.1002/2013JC009722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hally-Rosendahl, K., F. Feddersen, D. B. Clark, and R. T. Guza, 2015: Surfzone to inner-shelf exchange estimated from dye tracer balances. J. Geophys. Res. Oceans, 62896308, https://doi.org/10.1002/2015jc010844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickey, B., E. L. Dobbins, and S. E. Allen, 2003: Local and remote forcing of currents and temperature in the central Southern California bight. J. Geophys. Res., 108, 3081, https://doi.org/10.1029/2000JC000313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., 1984: Complex principal component analysis: Theory and examples. J. Climate Appl. Meteor., 23, 16601673, https://doi.org/10.1175/1520-0450(1984)023<1660:CPCATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horwitz, R. M., and S. J. Lentz, 2016: The effect of wind direction on cross-shelf transport on an initially stratified inner shelf. J. Mar. Res., 74, 201227, https://doi.org/10.1357/002224016820870648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, https://doi.org/10.1146/annurev.fl.14.010182.001023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D., and C. Pattiaratchi, 2006: Boussinesq modelling of transient rip currents. Coast. Eng., 53, 419439, https://doi.org/10.1016/j.coastaleng.2005.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. S., and D. L. Rudnick, 2015: Trapped diurnal internal tides, propagating semidiurnal internal tides, and mixing estimates in the California current system from sustained glider observations, 2006–2012. Deep-Sea Res. II, 112, 6178, https://doi.org/10.1016/j.dsr2.2014.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., 2010: Observations of submesoscale eddies using high-frequency radar-derived kinematic and dynamic quantities. Cont. Shelf Res., 30, 16391655, https://doi.org/10.1016/j.csr.2010.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., E. J. Terrill, and B. D. Cornuelle, 2009: Assessing coastal plumes in a region of multiple discharges: The US-Mexico border. Environ. Sci. Technol., 43, 74507457, https://doi.org/10.1021/es900775p.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., B. D. Cornuelle, and E. J. Terrill, 2010: Decomposing observations of high-frequency radar-derived surface currents by their forcing mechanisms: Decomposition techniques and spatial structures of decomposed surface currents. J. Geophys. Res., 115, C12007, https://doi.org/10.1029/2010JC006222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., and Coauthors, 2011: Mapping the U.S. west coast surface circulation: A multiyear analysis of high-frequency radar observations. J. Geophys. Res., 116, C03011, https://doi.org/10.1029/2010JC006669.

    • Search Google Scholar
    • Export Citation
  • Kumar, N., and F. Feddersen, 2017a: The effect of Stokes drift and transient rip currents on the inner shelf. Part II: With stratification. J. Phys. Oceanogr., 47, 243260, https://doi.org/10.1175/JPO-D-16-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., and F. Feddersen, 2017b: A new offshore transport mechanism for shoreline-released tracer induced by transient rip currents and stratification. Geophys. Res. Lett., 44, 28432851, https://doi.org/10.1002/2017GL072611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., G. Voulgaris, J. C. Warner, and M. Olabarrieta, 2012: Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modell., 47, 6595, https://doi.org/10.1016/j.ocemod.2012.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., F. Feddersen, Y. Uchiyama, J. McWilliams, and W. O. Reilly, 2015: Midshelf to surfzone coupled ROMS–SWAN model data comparison of waves, currents, and temperature: Diagnosis of subtidal forcings and response. J. Phys. Oceanogr., 45, 14641490, https://doi.org/10.1175/JPO-D-14-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., F. Feddersen, S. Suanda, Y. Uchiyama, and J. McWilliams, 2016: Mid- to inner-shelf coupled ROMS-SWAN model-data comparison of currents and temperature: Diurnal and semidiurnal variability. J. Phys. Oceanogr., 46, 841862, https://doi.org/10.1175/JPO-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., S. H. Suanda, J. A. Colosi, K. Haas, E. Di Lorenzo, A. J. Miller, and C. A. Edwards, 2019: Coastal semidiurnal internal tidal incoherence in the Santa Maria basin, California: Observations and model simulations. J. Geophys. Res. Oceans, 124, 51585179, https://doi.org/10.1029/2018JC014891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 2008: Observations and a model of the mean circulation over the middle Atlantic bight continental shelf. J. Phys. Oceanogr., 38, 12031221, https://doi.org/10.1175/2007JPO3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and C. D. Winant, 1986: Subinertial currents on the Southern California shelf. J. Phys. Oceanogr., 16, 17371750, https://doi.org/10.1175/1520-0485(1986)016<1737:SCOTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. R. Fewings, 2012: The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, https://doi.org/10.1146/annurev-marine-120709-142745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., R. T. Guza, S. Elgar, F. Feddersen, and T. H. C. Herbers, 1999: Momentum balances on the North Carolina inner shelf. J. Geophys. Res., 104, 18 20518 226, https://doi.org/10.1029/1999JC900101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., M. Hendershott, and C. Winant, 2001: Observations and modeling of coastal internal waves driven by a diurnal sea breeze. J. Geophys. Res., 106, 19 71519 729, https://doi.org/10.1029/2001JC000811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., C. D. Winant, and M. C. Hendershott, 2003: Observations of the semidiurnal internal tide on the southern California slope and shelf. J. Geophys. Res., 108, 3068, https://doi.org/10.1029/2001JC001128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., W. R. Geyer, and R. J. Chant, 2006: Mechanisms driving the time-dependent salt flux in a partially stratified estuary. J. Phys. Oceanogr., 36, 22962311, https://doi.org/10.1175/JPO2959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limeburner, R., and Coauthors, 1985: CODE-2: Moored array and large-scale data report. WHOI Tech. Rep 85-35, CODE Tech. Rep. 38, Woods Hole Oceanographic Institution, 242 pp.

  • Longuet-Higgins, M. S., 1970: Longshore currents generated by obliquely incident sea waves: 1. J. Geophys. Res., 75, 67786789, https://doi.org/10.1029/JC075i033p06778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., and P. Estrade, 2010: Upwelling limitation by onshore geostrophic flow. J. Mar. Res., 68, 3762, https://doi.org/10.1357/002224010793079004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, https://doi.org/10.1016/S1463-5003(00)00013-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., A472, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • McWilliams, J. C., J. Gula, M. J. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 19882005, https://doi.org/10.1175/JPO-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrifield, M., and R. Guza, 1990: Detecting propagating signals with complex empirical orthogonal functions: A cautionary note. J. Phys. Oceanogr., 20, 16281633, https://doi.org/10.1175/1520-0485(1990)020<1628:DPSWCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., N. Gruber, H. Frenzel, Z. Lachkar, J. C. McWilliams, and G.-K. Plattner, 2015: Dominant role of eddies and filaments in the offshore transport of carbon and nutrients in the California current system. J. Geophys. Res. Oceans, 120, 53185341, https://doi.org/10.1002/2015JC010889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, S., and U. Send, 2013: Resonant diurnal oscillations and mean alongshore flows driven by sea/land breeze forcing in the coastal Southern California Bight. J. Phys. Oceanogr., 43, 616630, https://doi.org/10.1175/JPO-D-11-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., M. J. Molemaker, B. Baschek, B. Holt, G. Marmorino, and G. Smith, 2017: Drifter observations of submesoscale flow kinematics in the coastal ocean. Geophys. Res. Lett., 44, 330337, https://doi.org/10.1002/2016GL071537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orozco-Borbón, M. V., R. Rico-Mora, S. B. Weisberg, R. T. Noble, J. H. Dorsey, M. K. Leecaster, and C. D. McGee, 2006: Bacteriological water quality along the Tijuana-Ensenada, Baja California, México shoreline. Mar. Pollut. Bull., 52, 11901196, https://doi.org/10.1016/j.marpolbul.2006.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, W., C. B. Olfe, J. Thomas, R. Seymour, and R. Guza, 2016: The California coastal wave monitoring and prediction system. Coast. Eng., 116, 118132, https://doi.org/10.1016/j.coastaleng.2016.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pineda, J., 1994: Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res., 52, 427458, https://doi.org/10.1357/0022240943077046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pringle, J. M., 2002: Enhancement of wind-driven upwelling and downwelling by alongshore bathymetric variability. J. Phys. Oceanogr., 32, 31013112, https://doi.org/10.1175/1520-0485(2002)032<3101:EOWDUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radermacher, M., M. A. de Schipper, C. Swinkels, J. H. MacMahan, and A. J. Reniers, 2017: Tidal flow separation at protruding beach nourishments. J. Geophys. Res. Oceans, 122, 6379, https://doi.org/10.1002/2016JC011942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, L. L., B. D. Cornuelle, L. A. Levin, J. L. Largier, and E. Di Lorenzo, 2009: Effects of small-scale features and local wind forcing on tracer dispersion and estimates of population connectivity in a regional scale circulation model. J. Geophys. Res., 114, C01012, https://doi.org/10.1029/2008JC004777.

    • Search Google Scholar
    • Export Citation
  • Rodriguez, A. R., S. N. Giddings, and N. Kumar, 2018: Impacts of nearshore wave-current interaction on transport and mixing of small-scale buoyant plumes. Geophys. Res. Lett., 45, 83798389, https://doi.org/10.1029/2018GL078328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., Y. Uchiyama, J. C. Ohlmann, J. C. McWilliams, and D. A. Siegel, 2013: Simulations of nearshore particle-pair dispersion in Southern California. J. Phys. Oceanogr., 43, 18621879, https://doi.org/10.1175/JPO-D-13-011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., D. A. Siegel, J. C. McWilliams, Y. Uchiyama, and C. Jones, 2016: Characterizing storm water dispersion and dilution from small coastal streams. J. Geophys. Res. Oceans, 121, 39263943, https://doi.org/10.1002/2015JC011323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roughan, M., E. J. Terrill, J. L. Largier, and M. P. Otero, 2005: Observations of divergence and upwelling around point Loma, California. J. Geophys. Res., 110, C04011, https://doi.org/10.1029/2004JC002662.

    • Search Google Scholar
    • Export Citation
  • Shanks, A. L., S. G. Morgan, J. MacMahan, and A. J. H. M. Reniers, 2010: Surf zone physical and morphological regime as determinants of temporal and spatial variation in larval recruitment. J. Exp. Mar. Biol. Ecol., 392, 140150, https://doi.org/10.1016/j.jembe.2010.04.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinnett, G., and F. Feddersen, 2019: The nearshore heat budget: Effects of stratification and surfzone dynamics. J. Geophys. Res. Oceans, 124, 82198240, https://doi.org/10.1029/2019JC015494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinnett, G., F. Feddersen, A. J. Lucas, G. Pawlak, and E. Terrill, 2018: Observations of nonlinear internal wave run-up to the surfzone. J. Phys. Oceanogr., 48, 531554, https://doi.org/10.1175/JPO-D-17-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, J. A., A. D. Blackwood, J. F. Griffith, R. T. Noble, and K. C. Schiff, 2018: Quantification of pathogens and markers of fecal contamination during storm events along popular surfing beaches in San Diego, California. Water Res., 136, 137149, https://doi.org/10.1016/j.watres.2018.01.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suanda, S. H., and F. Feddersen, 2015: A self-similar scaling for cross-shelf exchange driven by transient rip currents. Geophys. Res. Lett., 42, 54275434, https://doi.org/10.1002/2015GL063944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suanda, S. H., F. Feddersen, and N. Kumar, 2017: The effect of barotropic and baroclinic tides on coastal stratification and mixing. J. Geophys. Res. Oceans, 122, 10156, https://doi.org/10.1002/2017JC013379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suanda, S. H., F. Feddersen, M. S. Spydell, and N. Kumar, 2018: The effect of barotropic and baroclinic tides on three-dimensional coastal dispersion. Geophys. Res. Lett., 45, 11235, https://doi.org/10.1029/2018GL079884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilburg, C. E., and R. W. Garvine, 2003: Three-dimensional flow in a shallow coastal upwelling zone: Alongshore convergence and divergence on the New Jersey shelf. J. Phys. Oceanogr., 33, 21132125, https://doi.org/10.1175/1520-0485(2003)033<2113:TFIASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchiyama, Y., E. Y. Idica, J. C. McWilliams, and K. D. Stolzenbach, 2014: Wastewater effluent dispersal in Southern California bays. Cont. Shelf Res., 76, 3652, https://doi.org/10.1016/j.csr.2014.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61, 235265, https://doi.org/10.1357/002224003322005087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, R. K., and P. J. Phelan, 2016: Internal bore seasonality and tidal pumping of subthermocline waters at the head of the Monterey submarine canyon. Cont. Shelf Res., 116, 4253, https://doi.org/10.1016/j.csr.2016.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, R. K., C. B. Woodson, P. R. Leary, and S. G. Monismith, 2014: Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability. J. Geophys. Res. Oceans, 119, 35173534, https://doi.org/10.1002/2014JC009998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., B. Armstrong, R. He, and J. B. Zambon, 2010: Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modell., 35, 230244, https://doi.org/10.1016/j.ocemod.2010.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warrick, J., and Coauthors, 2007: River plume patterns and dynamics within the Southern California bight. Cont. Shelf Res., 27, 24272448, https://doi.org/10.1016/j.csr.2007.06.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerink, J. J., R. A. Luettich Jr., and N. Scheffner, 1993: Development of a tidal constituent database for the western North Atlantic and Gulf of Mexico. Rep. 3, ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries, Tech. Rep. DRP-92-6, Coastal Engineering Research Center, 150 pp., https://apps.dtic.mil/sti/pdfs/ADA268685.pdf.

  • Wong, S. H. C., S. G. Monismith, and A. B. Boehm, 2013: Simple estimate of entrainment rate of pollutants from a coastal discharge into the surf zone. Environ. Sci. Technol., 47, 11 55411 561, https://doi.org/10.1021/es402492f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., G. Voulgaris, and N. Kumar, 2018: Shelf cross-shore flows under storm-driven conditions: Role of stratification, shoreline orientation, and bathymetry. J. Phys. Oceanogr., 48, 25332553, https://doi.org/10.1175/JPO-D-17-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaba, K., D. Rudnick, B. Cornuelle, G. Gopalakrishnan, and M. Mazloff, 2018: Annual and interannual variability in the California current system: Comparison of an ocean state estimate with a network of underwater gliders. J. Phys. Oceanogr., 48, 29652988, https://doi.org/10.1175/JPO-D-18-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 110 110 96
Full Text Views 17 17 13
PDF Downloads 14 14 12

Mechanisms of Mid- to Outer-Shelf Transport of Shoreline-Released Tracers

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • 2 Department Civil and Environmental Engineering, University of Washington, Seattle, Washington
  • 3 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

Transport of shoreline-released tracer from the surfzone across the shelf can be affected by a variety of physical processes from wind-driven to submesoscale, with implications for shoreline contaminant dilution and larval dispersion. Here, a high-resolution wave–current coupled model that resolves the surfzone and receives realistic oceanic and atmospheric forcing is used to simulate dye representing shoreline-released untreated wastewater in the San Diego–Tijuana region. Surfzone and shelf alongshore dye transports are primarily driven by obliquely incident wave breaking and alongshore pressure gradients, respectively. At the midshelf to outer-shelf (MS–OS) boundary (25-m depth), defined as a mean streamline, along-boundary density gradients are persistent, dye is surface enhanced and time and alongshelf patchy. Using baroclinic and along-boundary perturbation dye transports, two cross-shore dye exchange velocities are estimated and related to physical processes. Barotropic and baroclinic tides cannot explain the modeled cross-shore transport. The baroclinic exchange velocity is consistent with the wind-driven Ekman transport. The perturbation exchange velocity is elevated for alongshore dye and cross-shore velocity length scales < 1 km (within the submesoscale) and stronger alongshore density gradient ∂ρ/∂y variability, indicating that alongfront geostrophic flows induce offshore transport. This elevated ∂ρ/∂y is linked to convergent northward surface along-shelf currents (likely due to regional bathymetry), suggesting deformation frontogenesis. Both surfzone and shelf processes influence offshore transport of shoreline-released tracers with key parameters of surfzone and shelf alongcoast currents and alongshelf winds.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Xiaodong Wu, x1wu@ucsd.edu

Abstract

Transport of shoreline-released tracer from the surfzone across the shelf can be affected by a variety of physical processes from wind-driven to submesoscale, with implications for shoreline contaminant dilution and larval dispersion. Here, a high-resolution wave–current coupled model that resolves the surfzone and receives realistic oceanic and atmospheric forcing is used to simulate dye representing shoreline-released untreated wastewater in the San Diego–Tijuana region. Surfzone and shelf alongshore dye transports are primarily driven by obliquely incident wave breaking and alongshore pressure gradients, respectively. At the midshelf to outer-shelf (MS–OS) boundary (25-m depth), defined as a mean streamline, along-boundary density gradients are persistent, dye is surface enhanced and time and alongshelf patchy. Using baroclinic and along-boundary perturbation dye transports, two cross-shore dye exchange velocities are estimated and related to physical processes. Barotropic and baroclinic tides cannot explain the modeled cross-shore transport. The baroclinic exchange velocity is consistent with the wind-driven Ekman transport. The perturbation exchange velocity is elevated for alongshore dye and cross-shore velocity length scales < 1 km (within the submesoscale) and stronger alongshore density gradient ∂ρ/∂y variability, indicating that alongfront geostrophic flows induce offshore transport. This elevated ∂ρ/∂y is linked to convergent northward surface along-shelf currents (likely due to regional bathymetry), suggesting deformation frontogenesis. Both surfzone and shelf processes influence offshore transport of shoreline-released tracers with key parameters of surfzone and shelf alongcoast currents and alongshelf winds.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Xiaodong Wu, x1wu@ucsd.edu
Save