• Agra, C., and D. Nof, 1993: Collision and separation of boundary currents. Deep-Sea Res. I, 40, 22592282, https://doi.org/10.1016/0967-0637(93)90103-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aref, H., 1984: Stirring by chaotic advection. J. Fluid Mech., 143, 121, https://doi.org/10.1017/S0022112084001233.

  • Becker, J., and et al. , 2009: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod., 32, 355371, https://doi.org/10.1080/01490410903297766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biló, T. C., and W. Johns, 2018: Interior pathways of Labrador Sea water in the North Atlantic from the Argo perspective. Geophys. Res. Lett., 46, 33403348, https://doi.org/10.1029/2018GL081439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C. W., 1988: Characteristics of particle dispersion in the North Atlantic: An alternative interpretation of SOFAR float results. Deep-Sea Res., 35A, 13791385, https://doi.org/10.1016/0198-0149(88)90089-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormans, M., and C. Garrett, 1989: A simple criterion for gyre formation by the surface outflow from a strait, with application to the Alboran Sea. J. Geophys. Res., 94, 12 63712 644, https://doi.org/10.1029/JC094iC09p12637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., L. Armi, and I. Ambar, 1997: Lagrangian observations of meddy formation during A Mediterranean Undercurrent Seeding Experiment. J. Phys. Oceanogr., 27, 25452575, https://doi.org/10.1175/1520-0485(1997)027<2545:LOOMFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., M. S. Lozier, S. F. Gary, and C. W. Böning, 2009: Interior pathways of the North Atlantic meridional overturning circulation. Nature, 459, 243247, https://doi.org/10.1038/nature07979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., S. Lozier, and S. Gary, 2011: Export of Labrador Sea water from the Subpolar North Atlantic: A Lagrangian perspective. Deep-Sea Res. II, 58, 17981818, https://doi.org/10.1016/j.dsr2.2010.10.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., R. M. Hendry, D. E. Amrhein, and J. M. Lilly, 2013: Direct observations of formation and propagation of subpolar eddies into the Subtropical North Atlantic. Deep-Sea Res. II, 85, 1541, https://doi.org/10.1016/j.dsr2.2012.07.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brett, G. J., L. Pratt, I. Rypina, and P. Wang, 2019: Competition between chaotic advection and diffusion: Stirring and mixing in a 3-D eddy model. Nonlinear Processes Geophys., 26, 3760, https://doi.org/10.5194/npg-26-37-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, https://doi.org/10.1002/2015RG000493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bullister, J. L., M. Rhein, and C. Mauritzen, 2013: Deepwater formation. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Elsevier, 227253, https://doi.org/10.1016/B978-0-12-391851-2.00010-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, M.-E., and H. T. Rossby, 2001: Pathways of the North Atlantic Current from surface drifters and subsurface floats. J. Geophys. Res., 106, 44054419, https://doi.org/10.1029/2000JC900106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., 1991: Laminar separation of colliding western boundary currents. J. Mar. Res., 49, 697717, https://doi.org/10.1357/002224091784995738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. Deszoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cimoli, L., A. Stegner, and G. Roullet, 2017: Meanders and eddy formation by a buoyant coastal current flowing over a sloping topography. Ocean Sci., 13, 905923, https://doi.org/10.5194/os-13-905-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1988: Generation of submesoscale vortices: A new mechanism. J. Geophys. Res., 93, 66856693, https://doi.org/10.1029/JC093iC06p06685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modell., 4950, 121, https://doi.org/10.1016/j.ocemod.2012.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., and F. A. Schott, 2002: Labrador Sea Water tracked by profiling floats–From the boundary current into the open North Atlantic. J. Phys. Oceanogr., 32, 573584, https://doi.org/10.1175/1520-0485(2002)032<0573:LSWTBP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., F. A. Schott, and M. Dengler, 2004: Boundary circulation at the exit of the Labrador Sea. J. Phys. Oceanogr., 34, 15481570, https://doi.org/10.1175/1520-0485(2004)034<1548:BCATEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., J. Karstensen, M. Oltmanns, and S. Schmidtko, 2018a: Gaussian Interpolated (GI) gridded mean 10-day Argo float drift velocities and eddy kinetic energy. PANGAEA, https://doi.org/10.1594/PANGAEA.894947.

    • Crossref
    • Export Citation
  • Fischer, J., J. Karstensen, M. Oltmanns, and S. Schmidtko, 2018b: Mean circulation and EKE distribution in the Labrador Sea water level of the Subpolar North Atlantic. Ocean Sci., 14, 11671183, https://doi.org/10.5194/os-14-1167-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furey, H., and A. Bower, 2009: Export pathways from the subpolar North Atlantic: DLD2 RAFOS Float Data Report July 2003–November 2008. WHOI Tech. Rep. WHOI-2009-06, 165 pp.

  • Gary, S. F., M. S. Lozier, C. W. Böning, and A. Biastoch, 2011: Deciphering the pathways for the deep limb of the meridional overturning circulation. Deep-Sea Res. II, 58, 17811797, https://doi.org/10.1016/j.dsr2.2010.10.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gary, S. F., M. S. Lozier, A. Biastoch, and C. W. Böning, 2012: Reconciling tracer and float observations of the export pathways of Labrador sea water. Geophys. Res. Lett., 39, L24606, https://doi.org/10.1029/2012GL053978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Getzlaff, K., C. W. Böning, and J. Dengg, 2006: Lagrangian perspectives of deep water export from the subpolar North Atlantic. Geophys. Res. Lett., 33, L21S08, https://doi.org/10.1029/2006GL026470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenberg, D. A., and B. D. Petrie, 1988: The mean barotropic circulation on the Newfoundland shelf and slope. J. Geophys. Res., 93, 15 54115 550, https://doi.org/10.1029/JC093iC12p15541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., and V. Zeitlin, 2014: Instabilities of shallow-water flows with vertical shear in the rotating annulus. Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, Geophys. Monogr., Vol. 15, Amer. Geophys. Union, 119138, https://doi.org/10.1002/9781118856024.ch6.

    • Search Google Scholar
    • Export Citation
  • Handmann, P., J. Fischer, M. Visbeck, J. Karstensen, A. Biastoch, C. Böning, and L. Patara, 2018: The deep western boundary current in the Labrador Sea from observations and a high-resolution model. J. Geophys. Res. Oceans, 123, 28292850, https://doi.org/10.1002/2017JC013702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D., and A. Robinson, 1978: Energy analysis of open regions of turbulent flows––Mean eddy energetics of a numerical ocean circulation experiment. Dyn. Atmos. Oceans, 2, 185211, https://doi.org/10.1016/0377-0265(78)90009-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., and W. E. Johns, 1995: Western boundary currents. Rev. Geophys., 33, 13111334, https://doi.org/10.1029/95RG00491.

  • Holliday, N., S. Bacon, J. Allen, and E. McDonagh, 2009: Circulation and transport in the western boundary currents at Cape Farewell, Greenland. J. Phys. Oceanogr., 39, 18541870, https://doi.org/10.1175/2009JPO4160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1973: An introduction to dynamic meteorology. Amer. J. Phys., 41, 752754, https://doi.org/10.1119/1.1987371.

  • Hughes, C. W., and B. A. De Cuevas, 2001: Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 28712885, https://doi.org/10.1175/1520-0485(2001)031<2871:WWBCIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I. N., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44, 37103720, https://doi.org/10.1175/1520-0469(1987)044<3710:SOBIIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., 1995: Flow separation in the coastal ocean. M.S. thesis, Centre for Earth and Ocean Research, University of Victoria, 55 pp.

  • Kearns, E. J., and N. Paldor, 2000: Why are the meanders of the North Atlantic Current stable and stationary? Geophys. Res. Lett., 27, 10291032, https://doi.org/10.1029/1999GL010508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., 1994: Inviscid current separation from rounded capes. J. Phys. Oceanogr., 24, 18051811, https://doi.org/10.1175/1520-0485(1994)024<1805:ICSFRC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger Seas by direct velocity measurements. Nature, 407, 6669, https://doi.org/10.1038/35024048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., W. B. Owens, and R. E. Davis, 2005: The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats. Deep-Sea Res. I, 52, 767785, https://doi.org/10.1016/j.dsr.2004.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K. V., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: YoMaHa’07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4(2), 16 pp., http://apdrc.soest.hawaii.edu/projects/yomaha/yomaha07/YoMaHa070612.pdf.

  • Le Bras, I. A., I. Yashayaev, and J. M. Toole, 2017: Tracking Labrador Sea water property signals along the deep western boundary current. J. Geophys. Res. Oceans, 122, 53485366, https://doi.org/10.1002/2017JC012921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Corre, M., J. Gula, and A. M. Treguier, 2019: Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model. Ocean Sci., 16, 451468, https://doi.org/10.5194/OS-16-451-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemarié, F., J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, https://doi.org/10.1016/j.ocemod.2011.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., 1997: Evidence for large-scale eddy-driven gyres in the North Atlantic. Science, 277, 361364, https://doi.org/10.1126/science.277.5324.361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., 2012: Overturning in the North Atlantic. Annu. Rev. Mar. Sci., 4, 291315, https://doi.org/10.1146/annurev-marine-120710-100740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., S. F. Gary, and A. S. Bower, 2013: Simulated pathways of the overflow waters in the North Atlantic: Subpolar to subtropical export. Deep-Sea Res. II, 85, 147153, https://doi.org/10.1016/j.dsr2.2012.07.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., A.-M. Treguier, and K. Speer, 2002: Lagrangian eddy scales in the northern Atlantic Ocean. J. Phys. Oceanogr., 32, 24252440, https://doi.org/10.1175/1520-0485-32.9.2425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, https://doi.org/10.1016/S1463-5003(00)00013-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., L. Debreu, and X. Couvelard, 2009: Spurious diapycnal mixing in terrain-following coordinate models: The problem and a solution. Ocean Modell., 26, 156169, https://doi.org/10.1016/j.ocemod.2008.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., J. Molemaker, A. F. Shchepetkin, F. Colas, J. C. McWilliams, and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, https://doi.org/10.1016/j.ocemod.2010.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDowell, S. E., and H. T. Rossby, 1978: Mediterranean water: An intense mesoscale eddy off the Bahamas. Science, 202, 10851087, https://doi.org/10.1126/science.202.4372.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182, https://doi.org/10.1029/RG023i002p00165.

  • Mechoso, C. R., 1980: Baroclinic instability of flows along sloping boundaries. J. Atmos. Sci., 37, 13931399, https://doi.org/10.1175/1520-0469(1980)037<1393:BIOFAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertens, C., M. Rhein, M. Walter, C. W. Böning, E. Behrens, D. Kieke, R. Steinfeldt, and U. Stöber, 2014: Circulation and transports in the Newfoundland Basin, western Subpolar North Atlantic. J. Geophys. Res. Oceans, 119, 77727793, https://doi.org/10.1002/2014JC010019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ou, H. W., and W. P. De Ruijter, 1986: Separation of an inertial boundary current from a curved coastline. J. Phys. Oceanogr., 16, 280289, https://doi.org/10.1175/1520-0485(1986)016<0280:SOAIBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2018: A note on interior pathways in the meridional overturning circulation. J. Phys. Oceanogr., 48, 643646, https://doi.org/10.1175/JPO-D-17-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and R. X. Huang, 1995: Structure of an inertial deep western boundary current. J. Mar. Res., 53, 739770, https://doi.org/10.1357/0022240953213007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pujol, M.-I., Y. Faugère, G. Taburet, S. Dupuy, C. Pelloquin, M. Ablain, and N. Picot, 2016: DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci., 12, 10671090, https://doi.org/10.5194/os-12-1067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rattan, S., P. G. Myers, A.-M. Treguier, S. Theetten, A. Biastoch, and C. Böning, 2010: Towards an understanding of Labrador Sea salinity drift in eddy-permitting simulations. Ocean Modell., 35, 7788, https://doi.org/10.1016/j.ocemod.2010.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. Gula, S. Masson, and J. C. McWilliams, 2016: Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 34393453, https://doi.org/10.1175/JPO-D-16-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and et al. , 2002: Labrador Sea water: Pathways, CFC inventory, and formation rates. J. Phys. Oceanogr., 32, 648665, https://doi.org/10.1175/1520-0485(2002)032<0648:LSWPCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, https://doi.org/10.1017/S0022112082002250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riser, S. C., and et al. , 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145153, https://doi.org/10.1038/nclimate2872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., 1996: The North Atlantic Current and surrounding waters: At the crossroads. Rev. Geophys., 34, 463481, https://doi.org/10.1029/96RG02214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., L. J. Pratt, J. Pullen, J. Levin, and A. L. Gordon, 2010: Chaotic advection in an archipelago. J. Phys. Oceanogr., 40, 19882006, https://doi.org/10.1175/2010JPO4336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., R. Zantopp, L. Stramma, M. Dengler, J. Fischer, and M. Wibaux, 2004: Circulation and deep-water export at the western exit of the subpolar North Atlantic. J. Phys. Oceanogr., 34, 817843, https://doi.org/10.1175/1520-0485(2004)034<0817:CADEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2011: Accurate Boussinesq oceanic modeling with a practical, “stiffened” equation of state. Ocean Modell., 38, 4170, https://doi.org/10.1016/j.ocemod.2011.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., J. N. Koshyk, and K. Ngan, 2000: On the nature of large-scale mixing in the stratosphere and mesosphere. J. Geophys. Res., 105, 12 43312 446, https://doi.org/10.1029/2000JD900133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. D., 1999: The primitive equations in the stochastic theory of adiabatic stratified turbulence. J. Phys. Oceanogr., 29, 18651880, https://doi.org/10.1175/1520-0485(1999)029<1865:TPEITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solodoch, A., A. L. Stewart, and J. C. McWilliams, 2016: Baroclinic instability of axially symmetric flow over sloping bathymetry. J. Fluid Mech., 799, 265296, https://doi.org/10.1017/jfm.2016.376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, P., O. A. Saenko, W. Sijp, and M. England, 2012: The role of bottom pressure torques on the interior pathways of North Atlantic Deep Water. J. Phys. Oceanogr., 42, 110125, https://doi.org/10.1175/2011JPO4584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srokosz, M., M. Baringer, H. Bryden, S. Cunningham, T. Delworth, S. Lozier, J. Marotzke, and R. Sutton, 2012: Past, present, and future changes in the Atlantic meridional overturning circulation. Bull. Amer. Meteor. Soc., 93, 16631676, https://doi.org/10.1175/BAMS-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., and A. Arons, 1959: On the abyssal circulation of the world ocean––I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140154, https://doi.org/10.1016/0146-6313(59)90065-6.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and et al. , 2009: Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res. II, 56, 554577, https://doi.org/10.1016/j.dsr2.2008.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2011: Descriptive Physical Oceanography: An Introduction. Academic Press, 560 pp.

  • Talley, L. D., and M. McCartney, 1982: Distribution and circulation of Labrador sea water. J. Phys. Oceanogr., 12, 11891205, https://doi.org/10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tréguier, A.-M., S. Theetten, E. P. Chassignet, T. Penduff, R. Smith, L. Talley, J. Beismann, and C. Böning, 2005: The North Atlantic subpolar gyre in four high-resolution models. J. Phys. Oceanogr., 35, 757774, https://doi.org/10.1175/JPO2720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2017: Atlantic meridional heat transports computed from balancing Earth’s energy locally. Geophys. Res. Lett., 44, 19191927, https://doi.org/10.1002/2016GL072475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. 2nd ed. Cambridge University Press, 946 pp.

    • Crossref
    • Export Citation
  • Whitehead, J. A., and A. Miller, 1979: Laboratory simulation of the gyre in the alboran sea. J. Geophys. Res., 84, 37333742, https://doi.org/10.1029/JC084iC07p03733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

    • Search Google Scholar
    • Export Citation
  • Xu, X., P. B. Rhines, E. P. Chassignet, and W. J. Schmitz Jr., 2015: Spreading of Denmark strait overflow water in the western Subpolar North Atlantic: Insights from eddy-resolving simulations with a passive tracer. J. Phys. Oceanogr., 45, 29132932, https://doi.org/10.1175/JPO-D-14-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., and J. W. Loder, 2016: Recurrent replenishment of Labrador sea water and associated decadal-scale variability. J. Geophys. Res. Oceans, 121, 80958114, https://doi.org/10.1002/2016JC012046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zantopp, R., J. Fischer, M. Visbeck, and J. Karstensen, 2017: From interannual to decadal: 17 years of boundary current transports at the exit of the Labrador Sea. J. Geophys. Res. Oceans, 122, 17241748, https://doi.org/10.1002/2016JC012271.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 95 95 14
Full Text Views 127 127 5
PDF Downloads 41 41 4

Why Does the Deep Western Boundary Current “Leak” around Flemish Cap?

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 2 Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France
  • | 3 LEGOS, University of Toulouse, IRD, CNRS, CNES, UPS, Toulouse, France
© Get Permissions
Restricted access

Abstract

The southward-flowing deep limb of the Atlantic meridional overturning circulation is composed of both the deep western boundary current (DWBC) and interior pathways. The latter are fed by “leakiness” from the DWBC in the Newfoundland Basin. However, the cause of this leakiness has not yet been explored mechanistically. Here the statistics and dynamics of the DWBC leakiness in the Newfoundland Basin are explored using two float datasets and a high-resolution numerical model. The float leakiness around Flemish Cap is found to be concentrated in several areas (hot spots) that are collocated with bathymetric curvature and steepening. Numerical particle advection experiments reveal that the Lagrangian mean velocity is offshore at these hot spots, while Lagrangian variability is minimal locally. Furthermore, model Eulerian mean streamlines separate from the DWBC to the interior at the leakiness hot spots. This suggests that the leakiness of Lagrangian particles is primarily accomplished by an Eulerian mean flow across isobaths, though eddies serve to transfer around 50% of the Lagrangian particles to the leakiness hot spots via chaotic advection, and rectified eddy transport accounts for around 50% of the offshore flow along the southern face of Flemish Cap. Analysis of the model’s energy and potential vorticity budgets suggests that the flow is baroclinically unstable after separation, but that the resulting eddies induce modest modifications of the mean potential vorticity along streamlines. These results suggest that mean uncompensated leakiness occurs mostly through inertial separation, for which a scaling analysis is presented. Implications for leakiness of other major boundary current systems are discussed.

Corresponding author: Aviv Solodoch, asolodoch@atmos.ucla.edu

Abstract

The southward-flowing deep limb of the Atlantic meridional overturning circulation is composed of both the deep western boundary current (DWBC) and interior pathways. The latter are fed by “leakiness” from the DWBC in the Newfoundland Basin. However, the cause of this leakiness has not yet been explored mechanistically. Here the statistics and dynamics of the DWBC leakiness in the Newfoundland Basin are explored using two float datasets and a high-resolution numerical model. The float leakiness around Flemish Cap is found to be concentrated in several areas (hot spots) that are collocated with bathymetric curvature and steepening. Numerical particle advection experiments reveal that the Lagrangian mean velocity is offshore at these hot spots, while Lagrangian variability is minimal locally. Furthermore, model Eulerian mean streamlines separate from the DWBC to the interior at the leakiness hot spots. This suggests that the leakiness of Lagrangian particles is primarily accomplished by an Eulerian mean flow across isobaths, though eddies serve to transfer around 50% of the Lagrangian particles to the leakiness hot spots via chaotic advection, and rectified eddy transport accounts for around 50% of the offshore flow along the southern face of Flemish Cap. Analysis of the model’s energy and potential vorticity budgets suggests that the flow is baroclinically unstable after separation, but that the resulting eddies induce modest modifications of the mean potential vorticity along streamlines. These results suggest that mean uncompensated leakiness occurs mostly through inertial separation, for which a scaling analysis is presented. Implications for leakiness of other major boundary current systems are discussed.

Corresponding author: Aviv Solodoch, asolodoch@atmos.ucla.edu
Save