• Aagaard, K., T. J. Weingartner, S. L. Danielson, R. A. Woodgate, G. C. Johnson, and T. E. Whitledge, 2006: Some controls on flow and salinity in Bering Strait. Geophys. Res. Lett., 33, L19602, https://doi.org/10.1029/2006GL026612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84, 25032517, https://doi.org/10.1029/JC084iC05p02503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., 2019: The global overturning circulation. Annu. Rev. Mar. Sci., 11, 249270, https://doi.org/10.1146/annurev-marine-010318-095241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., and C. Jones, 2017: Warm-route versus cold-route interbasin exchange in the meridional overturning circulation. J. Phys. Oceanogr., 47, 19811997, https://doi.org/10.1175/JPO-D-16-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielson, S. L., E. Curchitser, K. Hedstrom, T. Weingartner, and P. Stabeno, 2011: On ocean and sea ice modes of variability in the Bering Sea. J. Geophys. Res., 116, C12034, https://doi.org/10.1029/2011JC007389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielson, S. L., T. J. Weingartner, K. S. Hedstrom, K. Aagaard, R. Woodgate, E. Curchitser, and P. J. Stabeno, 2014: Coupled wind-forced controls of the Bering–Chukchi shelf circulation and the Bering Strait throughflow: Ekman transport, continental shelf waves, and variations of the Pacific–Arctic sea surface height gradient. Prog. Oceanogr., 125, 4061, https://doi.org/10.1016/j.pocean.2014.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Boer, A. M., and D. Nof, 2004: The Bering Strait’s grip on the Northern Hemisphere climate. Deep-Sea Res. I, 51, 13471366, https://doi.org/10.1016/j.dsr.2004.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., S. M. Griffies, A. J. G. Nurser, and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156, https://doi.org/10.1016/j.ocemod.2010.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., L.-P. Nadeau, D. P. Marshall, L. C. Allison, and H. L. Johnson, 2017: A model of the ocean overturning circulation with two closed basins and a reentrant channel. J. Phys. Oceanogr., 47, 28872906, https://doi.org/10.1175/JPO-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2017: ECCO version 4 release 3. 10 pp., http://hdl.handle.net/1721.1/110380.

  • Gent, P., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., and P. Niller, 1973: The theory of the seasonal variability in the ocean. Deep-Sea Res. Oceanogr. Abstr., 20, 141177, https://doi.org/10.1016/0011-7471(73)90049-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godfrey, J., 1989: A Sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45, 89112, https://doi.org/10.1080/03091928908208894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., and G. A. Meehl, 2005: Bering Strait throughflow and the thermohaline circulation. Geophys. Res. Lett., 32, L24610, https://doi.org/10.1029/2005GL024424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., B. L. Otto-Bliesner, G. A. Meehl, W. Han, C. Morrill, E. C. Brady, and B. Briegleb, 2008: Response of thermohaline circulation to freshwater forcing under present-day and LGM conditions. J. Climate, 21, 22392258, https://doi.org/10.1175/2007JCLI1985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, W. Han, and J. Yin, 2011: Effect of the potential melting of the Greenland Ice Sheet on the meridional overturning circulation and global climate in the future. Deep-Sea Res. II, 58, 19141926, https://doi.org/10.1016/j.dsr2.2010.10.069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and L.-P. Nadeau, 2016: The effect of Southern Ocean surface buoyancy loss on the deep-ocean circulation and stratification. J. Phys. Oceanogr., 46, 34553470, https://doi.org/10.1175/JPO-D-16-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., P. Cessi, D. P. Marshall, F. Schloesser, and M. A. Spall, 2019: Recent contributions of theory to our understanding of the Atlantic Meridional Overturning Circulation. J. Geophys. Res. Oceans, 124, 53765399, https://doi.org/10.1029/2019JC015330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and P. Cessi, 2016: Interbasin transport of the meridional overturning circulation. J. Phys. Oceanogr., 46, 11571169, https://doi.org/10.1175/JPO-D-15-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinney, J. C., and Coauthors, 2014: On the flow through Bering Strait: A synthesis of model results and observations. The Pacific Arctic Region, J. Grebmeier and W. Maslowski, Eds., Springer, 167–198, https://doi.org/10.1007/978-94-017-8863-2_7.

    • Crossref
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslowski, W., D. Marble, W. Walczowski, U. Schauer, J. L. Clement, and A. J. Semtner, 2004: On climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean model simulation. J. Geophys. Res., 109, C03032, https://doi.org/10.1029/2001JC001039.

    • Search Google Scholar
    • Export Citation
  • Nguyen, A. T., D. Menemenlis, and R. Kwok, 2011: Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. J. Geophys. Res., 116, C04025, https://doi.org/10.1029/2010JC006573.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, https://doi.org/10.1175/JPO-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, https://doi.org/10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panteleev, G., D. A. Nechaev, A. Proshutinsky, R. Woodgate, and J. Zhang, 2010: Reconstruction and analysis of the Chukchi Sea circulation in 1990–1991. J. Geophys. Res., 115, C08023, https://doi.org/10.1029/2009JC005453.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1961: On the temperature, salinity, and density differences between the Atlantic and Pacific Oceans in the upper kilometre. Deep-Sea Res., 7, 265275, https://doi.org/10.1016/0146-6313(61)90044-2.

    • Search Google Scholar
    • Export Citation
  • Stigebrandt, A., 1984: The North Pacific: A global-scale estuary. J. Phys. Oceanogr., 14, 464470, https://doi.org/10.1175/1520-0485(1984)014<0464:TNPAGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumata, H., and A. Kubokawa, 2001: Numerical study of eastern boundary ventilation and its effects on the thermocline structure. J. Phys. Oceanogr., 31, 30023019, https://doi.org/10.1175/1520-0485(2001)031<3002:NSOEBV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. L. Stewart, and T. Bischoff, 2016: A multibasin residual-mean model for the global overturning circulation. J. Phys. Oceanogr., 46, 25832604, https://doi.org/10.1175/JPO-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1993: Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by Southern Hemisphere winds? The Global Carbon Cycle, M. Heimann, Ed., NATO ASI Series, Vol. I, Springer, 333–366.

    • Crossref
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477500, https://doi.org/10.1016/0967-0637(95)00012-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toulany, B., and C. Garrett, 1984: Geostrophic control of fluctuating barotropic flow through straits. J. Phys. Oceanogr., 14, 649655, https://doi.org/10.1175/1520-0485(1984)014<0649:GCOFBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the mid-depth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, https://doi.org/10.1175/2010JPO4393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., 2018: Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog. Oceanogr., 160, 124154, https://doi.org/10.1016/j.pocean.2017.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Woodgate, and R. Moritz, 2010: Sea ice response to atmospheric and oceanic forcing in the Bering Sea. J. Phys. Oceanogr., 40, 17291747, https://doi.org/10.1175/2010JPO4323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 60 60 19
Full Text Views 4 4 2
PDF Downloads 13 13 3

Control of Bering Strait Transport by the Meridional Overturning Circulation

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

It is well established that the mean transport through Bering Strait is balanced by a sea level difference between the North Pacific and the Arctic Ocean, but no mechanism has been proposed to explain this sea level difference. It is argued that the sea level difference across Bering Strait, which geostrophically balances the northward throughflow, is associated with the sea level difference between the North Pacific and the North Atlantic/Arctic. In turn, the latter difference is caused by deeper middepth isopycnals in the Indo-Pacific than in the Atlantic, especially in the northern high latitudes because there is deep water formation in the Atlantic, but not in the Pacific. Because the depth of the middepth isopycnals is associated with the dynamics of the upper branch of the meridional overturning circulation (MOC), a model is formulated that quantitatively relates the sea level difference between the North Pacific and the Arctic/North Atlantic with the wind stress in the Antarctic Circumpolar region, since this forcing powers the MOC, and with the outcropping isopycnals shared between the Northern Hemisphere and the Antarctic circumpolar region, since this controls the location of deep water formation. This implies that if the sinking associated with the MOC were to occur in the North Pacific, rather than the North Atlantic, then the Bering Strait flow would reverse. These predictions, formalized in a theoretical box model, are confirmed by a series of numerical experiments in a simplified geometry of the World Ocean, forced by steady surface wind stress, temperature, and freshwater flux.

Corresponding author: Paola Cessi, pcessi@ucsd.edu

Abstract

It is well established that the mean transport through Bering Strait is balanced by a sea level difference between the North Pacific and the Arctic Ocean, but no mechanism has been proposed to explain this sea level difference. It is argued that the sea level difference across Bering Strait, which geostrophically balances the northward throughflow, is associated with the sea level difference between the North Pacific and the North Atlantic/Arctic. In turn, the latter difference is caused by deeper middepth isopycnals in the Indo-Pacific than in the Atlantic, especially in the northern high latitudes because there is deep water formation in the Atlantic, but not in the Pacific. Because the depth of the middepth isopycnals is associated with the dynamics of the upper branch of the meridional overturning circulation (MOC), a model is formulated that quantitatively relates the sea level difference between the North Pacific and the Arctic/North Atlantic with the wind stress in the Antarctic Circumpolar region, since this forcing powers the MOC, and with the outcropping isopycnals shared between the Northern Hemisphere and the Antarctic circumpolar region, since this controls the location of deep water formation. This implies that if the sinking associated with the MOC were to occur in the North Pacific, rather than the North Atlantic, then the Bering Strait flow would reverse. These predictions, formalized in a theoretical box model, are confirmed by a series of numerical experiments in a simplified geometry of the World Ocean, forced by steady surface wind stress, temperature, and freshwater flux.

Corresponding author: Paola Cessi, pcessi@ucsd.edu
Save