• Asselin, O., and W. Young, 2020: Penetration of wind-generated near-inertial waves into a turbulent ocean. J. Phys. Oceanogr., 50, 16991716, https://doi.org/10.1175/JPO-D-19-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmforth, N., and W. Young, 1999: Radiative damping of near-inertial oscillations in the mixed layer. J. Mar. Res., 57, 561584, https://doi.org/10.1357/002224099321549594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartello, P., 1995: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci., 52, 44104428, https://doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byun, S.-S., J. J. J. Park, K.-I. Chang, and R. Schmitt, 2010: Observation of near-inertial wave reflections within the thermostad layer of an anticyclonic mesoscale eddy. Geophys. Res. Lett., 37, L01606, https://doi.org/10.1029/2009GL041601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C., P. Flament, and K. Gurgel, 2010: The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part II: Interactions with mesoscale currents. J. Phys. Oceanogr., 40, 11801200, https://doi.org/10.1175/2010JPO4223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuypers, Y., P. Bouruet-Aubertot, C. Marec, and J.-L. Fuda, 2012: Characterization of turbulence from a fine-scale parameterization and microstructure measurements in the Mediterranean Sea during the BOUM experiment. Biogeosciences, 9, 31313149, https://doi.org/10.5194/bg-9-3131-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuypers, Y., P. Bouruet-Aubertot, J. Vialard, and M. McPhaden, 2017: Focusing of internal tides by near-inertial waves. Geophys. Res. Lett., 44, 23982406, https://doi.org/10.1002/2017GL072625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danioux, E., and P. Klein, 2008: A resonance mechanism leading to wind-forced motions with a 2f frequency. J. Phys. Oceanogr., 38, 23222329, https://doi.org/10.1175/2008JPO3822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danioux, E., P. Klein, and P. Rivière, 2008: Propagation of wind energy into the deep ocean through a fully turbulent mesoscale eddy field. J. Phys. Oceanogr., 38, 22242241, https://doi.org/10.1175/2008JPO3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danioux, E., J. Vanneste, and O. Bühler, 2015: On the concentration of near-inertial waves in anticyclones. J. Fluid Mech., 773, R2, https://doi.org/10.1017/jfm.2015.252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1989: The decay of wind-forced mixed layer inertial oscillations due to the β effect. J. Geophys. Res., 94, 20452056, https://doi.org/10.1029/JC094iC02p02045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1995: Upper-ocean inertial currents forced by a strong storm. Part III: Interaction of inertial currents and mesoscale eddies. J. Phys. Oceanogr., 25, 29532958, https://doi.org/10.1175/1520-0485(1995)025<2953:UOICFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drazin, P. G., and W. H. Reid, 1981: Hydrodynamic Stability. Cambridge University Press, 525 pp.

  • Elipot, S., R. Lumpkin, and G. Prieto, 2010: Modification of inertial oscillations by the mesoscale eddy field. J. Geophys. Res., 115, C09010, https://doi.org/10.1029/2009JC005679.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., J. M. Toole, P. Klein, and L. N. Thomas, 2013: A near-inertial mode observed within a gulf stream warm-core ring. J. Geophys. Res. Oceans, 118, 17971806, https://doi.org/10.1002/jgrc.20141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawaguchi, Y., T. Wagawa, and Y. Igeta, 2020: Near-inertial internal waves and multiple-inertial oscillations trapped by negative vorticity anomaly in the central Sea of Japan. Prog. Oceanogr., 181, 102240, https://doi.org/10.1016/J.POCEAN.2019.102240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and S. Llewellyn Smith, 2001: Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field. J. Mar. Res., 59, 697723, https://doi.org/10.1357/002224001762674908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., S. Llewellyn Smith, and G. Lapeyre, 2004: Organization of near-inertial energy by an eddy field. Quart. J. Roy. Meteor. Soc., 130, 11531166, https://doi.org/10.1256/qj.02.231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1986: The mean and near-inertial velocity fields in a warm-core ring. J. Phys. Oceanogr., 16, 14441461, https://doi.org/10.1175/1520-0485(1986)016<1444:TMANIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and J. M. Toole, 1997: Tidally-driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27, 26632693, https://doi.org/10.1175/1520-0485(1997)027<2663:TDVDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and E. Boss, 1998: A model for vortex-trapped internal waves. J. Phys. Oceanogr., 28, 21042115, https://doi.org/10.1175/1520-0485(1998)028<2104:AMFVTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., R. W. Schmitt, and J. M. Toole, 1995: The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr., 25, 942957, https://doi.org/10.1175/1520-0485(1995)025<0942:TEBIAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., and J. A. Shore, 1992: On the influence of horizontal inhomogeneities on the propagation of high frequency linear internal gravity waves in a baroclinic flow. J. Phys. Oceanogr., 22, 965975, https://doi.org/10.1175/1520-0485(1992)022<0965:TIOHIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.-K., and P. P. Niiler, 1998: The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103, 75797591, https://doi.org/10.1029/97JC03200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., and J. Riley, 1991: Internal wave-vortical mode interactions in strongly stratified flows. J. Fluid Mech., 232 (1), 119, https://doi.org/10.1017/S0022112091003609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., and E. Kunze, 2013: Can barotropic tide-eddy interactions excite internal waves? J. Fluid Mech., 721, 127, https://doi.org/10.1017/jfm.2013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, M. J., 1965: Contributions to the theory of waves in non-linear dispersive systems. IMA J. Appl. Math., 1, 269306, https://doi.org/10.1093/imamat/1.3.269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., 2017: jLab: A data analysis package for Matlab, v. 1.6.5. http://www.jmlilly.net/jmlsoft.html.

  • Lilly, J. M., and S. Olhede, 2012: Generalized Morse wavelets as a superfamily of analytic wavelets. IEEE Trans. Signal Process., 60, 60366041, https://doi.org/10.1109/TSP.2012.2210890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S., 1999: Near-inertial oscillations of a barotropic vortex: Trapped modes and time evolution. J. Phys. Oceanogr., 29, 747761, https://doi.org/10.1175/1520-0485(1999)029<0747:NIOOAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lueck, R., and T. Osborn, 1986: The dissipation of kinetic energy in a warm-core ring. J. Geophys. Res., 91, 803818, https://doi.org/10.1029/JC091iC01p00803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslowe, S. A., 1986: Critical layers in shear flows. Annu. Rev. Fluid Mech., 18, 405432, https://doi.org/10.1146/annurev.fl.18.010186.002201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moutin, T., and L. Prieur, 2012: Influence of anticyclonic eddies on the Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean (BOUM cruise). Biogeosciences, 9, 38273855, https://doi.org/10.5194/bg-9-3827-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moutin, T., F. van Wambeke, and L. Prieur, 2012: Introduction to the Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean (BOUM) experiment. Biogeosciences, 9, 38173825, https://doi.org/10.5194/bg-9-3817-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, H., 1976: Observed effect of an eddy on inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 23, 10371042, https://doi.org/10.1016/0011-7471(76)90879-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sartelet, K., 2003: Wave propagation inside an inertia wave. Part I: Role of time dependence and scale separation. J. Atmos. Sci., 60, 14331447, https://doi.org/10.1175/1520-0469(2003)060<1433:WPIAIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., J. A. Brearley, A. C. Naveira Garabato, D. A. Smeed, L. St Laurent, M. P. Meredith, and S. N. Waterman, 2015: Modification of turbulent dissipation rates by a deep Southern Ocean eddy. Geophys. Res. Lett., 42, 34503457, https://doi.org/10.1002/2015GL063216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Meurs, P., 1998: Interactions between near-inertial mixed layer currents and the mesoscale: The importance of spatial variabilities in the vorticity field. J. Phys. Oceanogr., 28, 13631388, https://doi.org/10.1175/1520-0485(1998)028<1363:IBNIML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voelker, G. S., P. G. Myers, M. Walter, and B. R. Sutherland, 2019: Generation of oceanic internal gravity waves by a cyclonic surface stress disturbance. Dyn. Atmos. Oceans, 86, 116133, https://doi.org/10.1016/j.dynatmoce.2019.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, G. L., and W. R. Young, 2016: A three-component model for the coupled evolution of near-inertial waves, quasi-geostrophic flow and the near-inertial second harmonic. J. Fluid Mech., 802, 806837, https://doi.org/10.1017/jfm.2016.487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2013: Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr., 43, 706725, https://doi.org/10.1175/JPO-D-12-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and A. de la Fuente, 2012: Modelling rotating stratified flows at laboratory-scale using spectrally-based DNS. Ocean Modell., 49-50, 4759, https://doi.org/10.1016/j.ocemod.2012.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., J. A. MacKinnon, and B. Mills, 2004: A spectral model for process studies of rotating, density-stratified flows. J. Atmos. Oceanic Technol., 21, 6994, https://doi.org/10.1175/1520-0426(2004)021<0069:ASMFPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, J.-H., and J. Vanneste, 2015: A generalized-Lagrangian-mean model of the interactions between near-inertial waves and mean flow. J. Fluid Mech., 774, 143169, https://doi.org/10.1017/jfm.2015.251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., and M. Ben Jelloul, 1997: Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res., 55, 735766, https://doi.org/10.1357/0022240973224283.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 84 84 37
Full Text Views 11 11 5
PDF Downloads 18 18 9

Near-Inertial Energy Propagation inside a Mediterranean Anticyclonic Eddy

View More View Less
  • 1 NorthWest Research Associates, Redmond, Washington
  • 2 Sorbonne Université (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, LOCEAN, Paris, France
© Get Permissions
Restricted access

Abstract

Motivated by observations of a strong near-inertial wave signal at the base of the semipermanent anticyclonic Cyprus Eddy during the 2010 Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean (BOUM) experiment, a numerical study is performed to investigate the role of near-inertial/eddy interactions in energy transfer out of the mixed layer. A hybrid temporal–spatial decomposition is used to split all variables into three independent components: slow (eddy) and fast (inertial oscillations + waves), which proves useful in understanding the flow dynamics. Through a detailed energy budget analysis, we find that the anticyclonic eddy acts as a catalyst in transferring wind-driven inertial energy to propagating waves. While the eddy sets the spatial scales of the waves, it does not participate in any energy exchange. Near-inertial propagation through the eddy core results in the formation of multiple critical levels with the largest accumulation of wave energy at the base of the eddy. A complementary ray-tracing analysis reveals critical-level formation when the surface-confined inertial rays originate within the negative vorticity region. In contrast, rays originating outside this region focus at the base of the eddy and can propagate at depth.

Corresponding author: M.-Pascale Lelong, pascale@nwra.com

Abstract

Motivated by observations of a strong near-inertial wave signal at the base of the semipermanent anticyclonic Cyprus Eddy during the 2010 Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean (BOUM) experiment, a numerical study is performed to investigate the role of near-inertial/eddy interactions in energy transfer out of the mixed layer. A hybrid temporal–spatial decomposition is used to split all variables into three independent components: slow (eddy) and fast (inertial oscillations + waves), which proves useful in understanding the flow dynamics. Through a detailed energy budget analysis, we find that the anticyclonic eddy acts as a catalyst in transferring wind-driven inertial energy to propagating waves. While the eddy sets the spatial scales of the waves, it does not participate in any energy exchange. Near-inertial propagation through the eddy core results in the formation of multiple critical levels with the largest accumulation of wave energy at the base of the eddy. A complementary ray-tracing analysis reveals critical-level formation when the surface-confined inertial rays originate within the negative vorticity region. In contrast, rays originating outside this region focus at the base of the eddy and can propagate at depth.

Corresponding author: M.-Pascale Lelong, pascale@nwra.com
Save