• Bretherton, F., R. Davis, and C. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, https://doi.org/10.1016/0011-7471(76)90001-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 21 November 2017, https://doi.org/10.5067/8GQ8LZQVL0VL.

    • Crossref
    • Export Citation
  • Cessi, P., and F. Primeau, 2001: Dissipative selection of low-frequency modes in a reduced-gravity basin. J. Phys. Oceanogr., 31, 127137, https://doi.org/10.1175/1520-0485(2001)031<0127:DSOLFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1978: The arrested topographic wave. J. Phys. Oceanogr., 8, 4762, https://doi.org/10.1175/1520-0485(1978)008<0047:TATW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., P.-Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/POSEIDON and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., 2006: Seasonal and interannual variations in the East Sakhalin Current revealed by the TOPEX/POSEIDON altimeter data. J. Oceanogr., 62, 171183, https://doi.org/10.1007/s10872-006-0042-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G., 1977: Simple applications of McWilliams’ “A note on a consistent quasigeostrophic model in a multiply connected domain.” Dyn. Atmos. Oceans, 1, 443453, https://doi.org/10.1016/0377-0265(77)90003-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeland, H. J., A. S. Bychkov, F. Whitney, C. Taylor, C. S. Wong, and G. I. Yurasov, 1998: WOCE section P1W in the Sea of Okhotsk: 1. Oceanographic data description. J. Geophys. Res., 103, 15 61315 623, https://doi.org/10.1029/98JC00368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukamachi, Y., G. Mizuta, K. I. Ohshima, L. D. Talley, S. C. Riser, and M. Wakatsuchi, 2004: Transport and modification processes of dense shelf water revealed by long-term moorings off Sakhalin in the Sea of Okhotsk. J. Geophys. Res., 109, C09S10, https://doi.org/10.1029/2003JC001906.

    • Search Google Scholar
    • Export Citation
  • Itoh, M., K. I. Ohshima, and M. Wakatsuchi, 2003: Distribution and formation of Okhotsk Sea intermediate water: An analysis of isopycnal climatology data. J. Geophys. Res. Oceans, 108, 3258, https://doi.org/10.1029/2002JC001590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashiwase, H., K. I. Ohshima, and S. Nihashi, 2014: Long-term variation in sea ice production and its relation to intermediate water in the sea of Okhotsk. Prog. Oceanogr., 126, 2132, https://doi.org/10.1016/j.pocean.2014.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2000: Baroclinic Rossby waves in a square basin. J. Phys. Oceanogr., 30, 31613178, https://doi.org/10.1175/1520-0485(2000)030<3161:BRWIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and J. Pedlosky, 2002: Baroclinic Rossby waves in irregular basins. J. Phys. Oceanogr., 32, 28282847, https://doi.org/10.1175/1520-0485(2002)032<2828:BRWIIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P.-Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multi-satellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., Y. Faugere, F. Hernandez, J. Dorandeu, F. Mertz, and M. Ablain, 2003: Can we merge GEOSAT Follow-On with TOPEX/POSEIDON and ERS-2 for an improved description of the ocean circulation? J. Atmos. Oceanic Technol., 20, 889895, https://doi.org/10.1175/1520-0426(2003)020<0889:CWMGFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1964: Planetary waves on a rotating sphere. Proc. Roy. Soc. London, 279A, 446473, https://doi.org/10.1098/RSPA.1964.0116.

    • Search Google Scholar
    • Export Citation
  • Mensah, V., K. I. Ohshima, T. Nakanowatari, and S. Riser, 2019: Seasonal changes of water mass, circulation and dynamic response in the Kuril Basin of the Sea of Okhotsk. Deep-Sea Res. I, 144, 115131, https://doi.org/10.1016/j.dsr.2019.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, G., Y. Fukamachi, K. I. Ohshima, and M. Wakatsuchi, 2003: Structure and seasonal variability of the east Sakhalin current. J. Phys. Oceanogr., 33, 24302445, https://doi.org/10.1175/1520-0485(2003)033<2430:SASVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., and T. Awaji, 2004: Tidally induced diapycnal mixing in the Kuril straits and its role in water transformation and transport: A three-dimensional nonhydrostatic model experiment. J. Geophys. Res., 109, C09S07, https://doi.org/10.1029/2003JC001850.

    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., and K. I. Ohshima, 2014: Coherent sea level variation in and around the Sea of Okhotsk. Prog. Oceanogr., 126, 5870, https://doi.org/10.1016/j.pocean.2014.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., K. I. Ohshima, and M. Wakatsuchi, 2007: Warming and oxygen decrease of intermediate water in the northwestern North Pacific originating from the Sea of Okhotsk, 1955-2004. Geophys. Res. Lett., 34, L04602, https://doi.org/10.1029/2006GL028243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishioka, J., and Coauthors, 2013: Intensive mixing along an island chain controls oceanic biogeochemical cycles. Global Biogeochem. Cycles, 27, 920929, https://doi.org/10.1002/GBC.20088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., 1994: The flow system in the Japan Sea caused by a sea level difference through shallow straits. J. Geophys. Res., 99, 99259940, https://doi.org/10.1029/94JC00170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., M. Wakatsuchi, Y. Fukamachi, and G. Mizuta, 2002: Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J. Geophys. Res., 107, 3195, https://doi.org/10.1029/2001JC001005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., D. Simizu, M. Itoh, G. Mizuta, Y. Fukamachi, S. C. Riser, and M. Wakatsuchi, 2004: Sverdrup balance and the cyclonic gyre in the Sea of Okhotsk. J. Phys. Oceanogr., 34, 513525, https://doi.org/10.1175/1520-0485(2004)034<0513:SBATCG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., Y. Fukamachi, T. Mutoh, and M. Wakatsuchi, 2005: A generation mechanism for mesoscale eddies in the Kuril basin of the Okhotsk Sea: Baroclinic instability caused by enhanced tidal mixing. J. Oceanogr., 61, 247260, https://doi.org/10.1007/s10872-005-0035-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., T. Nakanowatari, S. Riser, and M. Wakatsuchi, 2010: Seasonal variation in the in- and outflow of the Okhotsk Sea with the north Pacific. Deep-Sea Res. II, 57, 12471256, https://doi.org/10.1016/j.dsr2.2009.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., T. Nakanowatari, S. Riser, Y. Volkov, and M. Wakatsuchi, 2014: Freshening and dense shelf water reduction in the Okhotsk Sea linked with sea ice decline. Prog. Oceanogr., 126, 7179, https://doi.org/10.1016/j.pocean.2014.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., D. Simizu, N. Ebuchi, S. Morishima, and H. Kashiwase, 2017: Volume, heat, and salt transports through the Soya Strait and their seasonal and interannual variations. J. Phys. Oceanogr., 47, 9991019, https://doi.org/10.1175/JPO-D-16-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ono, K., K. I. Ohshima, T. Kono, K. Katsumata, I. Yasuda, and M. Wakatsuchi, 2013: Distribution of vertical diffusivity in the Bussol’ strait: A mixing hot spot in the north Pacific. Deep-Sea Res. I, 79, 6273, https://doi.org/10.1016/J.DSR.2013.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osafune, S., and I. Yasuda, 2006: Bidecadal variability in the intermediate waters of the northwestern subarctic Pacific and the Okhotsk Sea in relation to 18.6-year period nodal tidal cycle. J. Geophys. Res., 111, C05007, https://doi.org/10.1029/2005JC003277.

    • Search Google Scholar
    • Export Citation
  • Osafune, S., and I. Yasuda, 2013: Remote impacts of the 18.6 year period modulation of localized tidal mixing in the North Pacific. J. Geophys. Res. Oceans, 118, 31283137, https://doi.org/10.1002/jgrc.20230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987. Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Rabinovich, A. B., R. E. Thomson, and S. J. Bograd, 2002: Drifter observations of anticyclonic eddies near Bussol Strait, the Kuril Islands. J. Oceanogr., 58, 661671, https://doi.org/10.1023/A:1022890222516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogachev, K. A., 2000: Recent variability in the Pacific western subarctic boundary currents and Sea of Okhotsk. Prog. Oceanogr., 47, 299336, https://doi.org/10.1016/S0079-6611(00)00040-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasano, D., Y. Takatani, N. Kosugi, T. Nakano, T. Midorikawa, and M. Ishii, 2018: Decline and bidecadal oscillations of dissolved oxygen in the Oyashio Region and their propagation to the western North Pacific. Global Biogeochem. Cycles, 32, 909931, https://doi.org/10.1029/2017GB005876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., L. D. Talley, and D. L. Rudnick, 2003: Direct observations of North Pacific ventilation: Brine rejection in the Okhotsk Sea. Science, 302, 19521955, https://doi.org/10.1126/science.1088692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simizu, D., and K. I. Ohshima, 2006: A model simulation on the circulation in the Sea of Okhotsk and the East Sakhalin Current. J. Geophys. Res., 111, C05016, https://doi.org/10.1029/2005JC002980.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1991: An Okhotsk sea water anomaly: Implications for ventilation in the north Pacific. Deep-Sea Res., 38A (Suppl.), S171S190, https://doi.org/10.1016/S0198-0149(12)80009-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchimoto, K., H. Mitsudera, N. Ebuchi, and Y. Miyazawa, 2007: Anticyclonic eddy caused by the Soya warm current in an Okhotsk OGCM. J. Oceanogr., 63, 379391, https://doi.org/10.1007/s10872-007-0036-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchimoto, K., H. Mitsudera, N. Ebuchi, and G. Mizuta, 2008: Seasonal variations of the sea level in the eastern part of the Kuril Basin (in Japanese). Umi Sora, 84, 2935.

    • Search Google Scholar
    • Export Citation
  • Wakatsuchi, M., and S. Martin, 1991: Water circulation in the Kuril basin of the Okhotsk Sea and its relation to eddy formation. J. Oceanogr. Soc. Japan, 47, 152168, https://doi.org/10.1007/BF02301064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. J., J. L. Bullister, D. P. Wisegraver, R. H. Gammon, and R. F. Weiss, 1996: Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985–1989. J. Geophys. Res., 101, 20 52520 542, https://doi.org/10.1029/96JC01849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, B. A., T. Whitworth, and J. H. LaCasce, 2002: Forced resonant undulation in the deep Mascarene Basin. Deep-Sea Res. II, 49, 15131526, https://doi.org/10.1016/S0967-0645(01)00151-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, C. S., R. J. Matear, H. J. Freeland, F. A. Whitney, and A. S. Bychkov, 1998: WOCE line P1W in the Sea of Okhotsk: 2. CFCs and the formation rate of intermediate water. J. Geophys. Res., 103, 15 62515 642, https://doi.org/10.1029/98JC01008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, L., Q. Zheng, S. Zhang, J. Hu, M. Li, J. Li, and Y. Xu, 2018: The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry. Int. J. Remote Sens., 39, 399417, https://doi.org/10.1080/01431161.2017.1384591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yagi, M., and I. Yasuda, 2012: Deep intense vertical mixing in the Bussol’ Strait. Geophys. Res. Lett., 39, L01602, https://doi.org/10.1029/2011GL050349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamamoto-Kawai, M., S. Watanabe, S. Tsugonai, and M. Wakatsuchi, 2004: Chlorofluorocarbons in the sea of Okhotsk: Ventilation of the intermediate water. J. Geophys. Res., 109, C09S11, https://doi.org/10.1029/2003JC001919.

    • Search Google Scholar
    • Export Citation
  • Yasuda, I., 1997: The origin of the north Pacific intermediate water. J. Geophys. Res., 102, 893909, https://doi.org/10.1029/96JC02938.

  • You, Y., N. Suginohara, M. Fukasawa, I. Yasuda, I. Kaneko, H. Yoritaka, and M. Kawamiya, 2000: Roles of the Okhotsk Sea and Gulf of Alaska in forming the north Pacific intermediate water. J. Geophys. Res., 105, 32533280, https://doi.org/10.1029/1999JC900304.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 33 33 18
Full Text Views 3 3 2
PDF Downloads 2 2 1

Variabilities of the Sea Surface Height in the Kuril Basin of the Sea of Okhotsk: Coherent Shelf-Trapped Mode and Rossby Normal Modes

View More View Less
  • 1 Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
© Get Permissions
Restricted access

Abstract

A time series analysis of the sea surface height anomaly (SSHa) was conducted in the Kuril Basin of the Sea of Okhotsk. The mapping of the satellite-derived SSHa data was optimized to mitigate the effects of sea ice on the SSHa field during winter and early spring. Complex empirical orthogonal functions (CEOFs) were then used to analyze the SSHa field, revealing that the first three modes account for 55% of the signal variance. Mode 1 mainly represents the coherent variability trapped over the shelves all along the coastal regions and the Kuril Islands. Both seasonal and interannual variations are strongly correlated with the alongshore wind stress and can be well explained by an arrested topographic wave. Mode 3 is a propagating mode that exhibits trains of southwestward-propagating, high-amplitude anomalies. One possible mechanism for this is first-mode baroclinic Rossby waves, whose energy propagates from the Kuril Straits toward the Kuril Basin. However, mode 3 can be better interpreted as barotropic Rossby normal modes generated in the deep Kuril Basin. Mode 2 is a standing mode that may encompass the baroclinic variability in the basin. The monthly mean of the SSHa in the Kuril Basin is primarily governed by variability in mode 1, with mode 2 contributing to a lesser extent, and mode 3 being insignificant.

Corresponding author: V. Mensah, vmensah@lowtem.hokudai.ac.jp

Abstract

A time series analysis of the sea surface height anomaly (SSHa) was conducted in the Kuril Basin of the Sea of Okhotsk. The mapping of the satellite-derived SSHa data was optimized to mitigate the effects of sea ice on the SSHa field during winter and early spring. Complex empirical orthogonal functions (CEOFs) were then used to analyze the SSHa field, revealing that the first three modes account for 55% of the signal variance. Mode 1 mainly represents the coherent variability trapped over the shelves all along the coastal regions and the Kuril Islands. Both seasonal and interannual variations are strongly correlated with the alongshore wind stress and can be well explained by an arrested topographic wave. Mode 3 is a propagating mode that exhibits trains of southwestward-propagating, high-amplitude anomalies. One possible mechanism for this is first-mode baroclinic Rossby waves, whose energy propagates from the Kuril Straits toward the Kuril Basin. However, mode 3 can be better interpreted as barotropic Rossby normal modes generated in the deep Kuril Basin. Mode 2 is a standing mode that may encompass the baroclinic variability in the basin. The monthly mean of the SSHa in the Kuril Basin is primarily governed by variability in mode 1, with mode 2 contributing to a lesser extent, and mode 3 being insignificant.

Corresponding author: V. Mensah, vmensah@lowtem.hokudai.ac.jp
Save