• Abernathey, R. P., D. Ferreira, and A. Klocker, 2013: Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Modell., 72, 116, https://doi.org/10.1016/j.ocemod.2013.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R. P., I. Cerovecki, P. R. Holland, E. Newsom, M. Mazloff, and L. D. Talley, 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci., 9, 596601, https://doi.org/10.1038/ngeo2749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, D., H. Kheshgi, and E. Maier-Reimer, 1998: Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Global Biogeochem. Cycles, 12, 259276, https://doi.org/10.1029/98GB00744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bezanson, J., A. Edelman, S. Karpinski, and V. Shah, 2017: Julia: A fresh approach to numerical computing. SIAM Rev., 59, 6598, https://doi.org/10.1137/141000671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84, 25032517, https://doi.org/10.1029/jc084ic05p02503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., 2018: Restratification of abyssal mixing layers by submesoscale baroclinic eddies. J. Phys. Oceanogr., 48, 19952010, https://doi.org/10.1175/JPO-D-18-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Dynamics of an abyssal circulation driven by bottom-intensified mixing on slopes. J. Phys. Oceanogr., 48, 12571282, https://doi.org/10.1175/JPO-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cember, R. P., 1998: On deep western boundary currents. J. Geophys. Res., 103, 53975417, https://doi.org/10.1029/97JC02422.

  • Cimoli, L., C.-P. Caulfield, H. L. Johnson, D. P. Marshall, A. Mashayek, A. C. N. Garabato, and C. Vic, 2019: Sensitivity of deep ocean mixing to local internal tide breaking and mixing efficiency. Geophys. Res. Lett., 46, 14 62214 633, https://doi.org/10.1029/2019GL085056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016a: The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr., 46, 663681, https://doi.org/10.1175/JPO-D-14-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016b: On the consumption of Antarctic bottom water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, https://doi.org/10.1175/JPO-D-14-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, F. Roquet, R. M. Holmes, and T. J. McDougall, 2017: Abyssal ocean overturning shaped by seafloor distribution. Nature, 551, 181186, https://doi.org/10.1038/nature24472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dell, R., and L. Pratt, 2015: Diffusive boundary layers over varying topography. J. Fluid Mech., 769, 635653, https://doi.org/10.1017/jfm.2015.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Szoeke, R. A., and A. F. Bennett, 1993: Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 23, 22542264, https://doi.org/10.1175/1520-0485(1993)023<2254:mfads>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, H., 2020: hdrake/abyssalflow: First set of revisions. Zenodo, https://doi.org/10.5281/zenodo.3746882.

    • Crossref
    • Export Citation
  • Emile-Geay, J., and G. Madec, 2009: Geothermal heating, diapycnal mixing and the abyssal circulation. Ocean Sci., 5, 203217, https://doi.org/10.5194/os-5-203-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., and et al. , 2019: Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. Proc. Natl. Acad. Sci. USA, 116, 13 23313 238, https://doi.org/10.1073/pnas.1904087116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1990: The role of secondary circulation in boundary mixing. J. Geophys. Res., 95, 31813188, https://doi.org/10.1029/JC095iC03p03181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., P. MacCready, and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, https://doi.org/10.1146/annurev.fl.25.010193.001451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:imiocm>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and K. P. Koltermann, 2004: WOCE Global Hydrographic Climatology. BSH Tech. Rep. 35, 52 pp.

  • Greatbatch, R. J., and K. G. Lamb, 1990: On parameterizing vertical mixing of momentum in non-eddy resolving ocean models. J. Phys. Oceanogr., 20, 16341637, https://doi.org/10.1175/1520-0485(1990)020<1634:opvmom>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., G. Russell, A. Lacis, I. Fung, D. Rind, and P. Stone, 1985: Climate response times: Dependence on climate sensitivity and ocean mixing. Science, 229, 857859, https://doi.org/10.1126/science.229.4716.857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N., P. Biscaye, W. Gardner, and W. Schmmitz Jr., 1982: On the transport and modification of Antarctic bottom water in the Vema Channel. J. Mar. Res., 40, 231263.

    • Search Google Scholar
    • Export Citation
  • Holden, P. B., N. R. Edwards, K. Fraedrich, E. Kirk, F. Lunkeit, and X. Zhu, 2016: PLASIM–GENIE v1.0: A new intermediate complexity AOGCM. Geosci. Model Dev., 9, 33473361, https://doi.org/10.5194/gmd-9-3347-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., C. de Lavergne, and T. J. McDougall, 2018: Ridges, seamounts, troughs, and bowls: Topographic control of the dianeutral circulation in the abyssal ocean. J. Phys. Oceanogr., 48, 861882, https://doi.org/10.1175/JPO-D-17-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., C. de Lavergne, and T. J. McDougall, 2019: Tracer transport within abyssal mixing layers. J. Phys. Oceanogr., 49, 26692695, https://doi.org/10.1175/JPO-D-19-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and X. Jin, 2002: Deep circulation in the South Atlantic induced by bottom-intensified mixing over the midocean ridge. J. Phys. Oceanogr., 32, 11501164, https://doi.org/10.1175/1520-0485(2002)032<1150:DCITSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and L.-P. Nadeau, 2019: A toy model for the response of the residual overturning circulation to surface warming. J. Phys. Oceanogr., 49, 12491268, https://doi.org/10.1175/JPO-D-18-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, https://doi.org/10.1175/2009JPO4085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawase, M., 1987: Establishment of deep ocean circulation driven by deep-water production. J. Phys. Oceanogr., 17, 22942317, https://doi.org/10.1175/1520-0485(1987)017<2294:EODOCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koltermann, K. P., V. Gouretski, and K. Jancke, 2011: Atlantic Ocean. Vol. 3, Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), WOCE International Project Office, https://doi.org/10.21976/C6RP4Z.

    • Crossref
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, https://doi.org/10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, https://doi.org/10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, http://doi.org/10.1175/JPO3130.1.

  • MacKinnon, J. A., and et al. , 2017: Climate process team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marotzke, J., 1997: Boundary mixing and the dynamics of three-dimensional thermohaline circulations. J. Phys. Oceanogr., 27, 17131728, https://doi.org/10.1175/1520-0485(1997)027<1713:bmatdo>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic circumpolar current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:rsftac>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, https://doi.org/10.1016/s0967-0637(98)00082-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and R. Ferrari, 2017: Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr., 47, 261283, https://doi.org/10.1175/JPO-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., S. Legg, and R. Hallberg, 2016: Climatic impacts of parameterized local and remote tidal mixing. J. Climate, 29, 34733500, https://doi.org/10.1175/JCLI-D-15-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep Sea Res., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, https://doi.org/10.1175/2009JPO4199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and S. Legg, 2011: A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr., 41, 378395, https://doi.org/10.1175/2010JPO4522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, https://doi.org/10.1175/2010JPO4529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, https://doi.org/10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., G. Vallis, M. Nikurashin, and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, https://doi.org/10.1175/JPO-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res. Oceans, 110, C10028, https://doi.org/10.1029/2004JC002487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:eotlro>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1992: The baroclinic structure of the abyssal circulation. J. Phys. Oceanogr., 22, 652659, https://doi.org/10.1175/1520-0485(1992)022<0652:TBSOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer, 453 pp., https://doi.org/10.1007/978-3-662-03204-6.

  • Phillips, O. M., 1970: On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res. Oceanogr. Abstr., 17, 435443, https://doi.org/10.1016/0011-7471(70)90058-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., J.-H. Shyu, and H. Salmun, 1986: An experiment on boundary mixing: Mean circulation and transport rates. J. Fluid Mech., 173, 473499, https://doi.org/10.1017/s0022112086001234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, https://doi.org/10.1016/j.ocemod.2009.07.006.

  • Polzin, K. L., J. Toole, J. R. Ledwell, and R. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1993: Oceanic general circulation: Wave and advection dynamics. Modelling Oceanic Climate Interactions, J. Willebrand and D. L. T. Anderson, Eds., Springer, 67–149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A., and H. Stommel, 1959: The oceanic thermocline and the associated thermohaline circulation. Tellus, 11, 295308, https://doi.org/10.1111/j.2153-3490.1959.tb00035.x.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1992: A two-layer Gulf Stream over a continental slope. J. Mar. Res., 50, 341365, https://doi.org/10.1357/002224092784797610.

  • Salmun, H., P. D. Killworth, and J. R. Blundell, 1991: A two-dimensional model of boundary mixing. J. Geophys. Res., 96, 18 44718 474, https://doi.org/10.1029/91JC01917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1998: Large-scale circulation with locally enhanced vertical mixing. J. Phys. Oceanogr., 28, 712726, https://doi.org/10.1175/1520-0485(1998)028<0712:lscwle>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., and J. R. Toggweiler, 1984: A new model for the role of the oceans in determining atmospheric PCO2. Nature, 308, 621624, https://doi.org/10.1038/308621a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and et al. , 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, https://doi.org/10.1002/jgrc.20217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, https://doi.org/10.1175/1520-0485(2002)032<2882:troiti>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil basin. J. Phys. Oceanogr., 31, 34763495, https://doi.org/10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Trans. Amer. Geophys. Union, 29, 202, https://doi.org/10.1029/TR029i002p00202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1957: The abyssal circulation of the ocean. Nature, 180, 733734, https://doi.org/10.1038/180733a0.

  • Stommel, H., and A. B. Arons, 1959a: On the abyssal circulation of the world ocean—I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140154, https://doi.org/10.1016/0146-6313(59)90065-6.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., and A. B. Arons, 1959b: On the abyssal circulation of the world ocean—II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res., 6, 217233, https://doi.org/10.1016/0146-6313(59)90075-9.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H., M. Johnson, and R. Fleming, 1942: The oceans: Their physics, chemistry and general biology. Oceanography, 34, 170, https://doi.org/10.2307/210609.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2007: Pacific Ocean. Vol. 2, Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), WOCE International Project Office, https://doi.org/10.21976/C6WC77.

    • Crossref
    • Export Citation
  • Talley, L. D., 2013a: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013b: Indian Ocean. Vol. 4, Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), International WOCE Project Office, https://doi.org/10.21976/C61595.

    • Crossref
    • Export Citation
  • Thompson, A. F., A. L. Stewart, and T. Bischoff, 2016: A multibasin residual-mean model for the global overturning circulation. J. Phys. Oceanogr., 46, 25832604, https://doi.org/10.1175/JPO-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, L., and G. C. Johnson, 1996: Abyssal currents generated by diffusion and geothermal heating over rises. Deep-Sea Res. I, 43, 193211, https://doi.org/10.1016/0967-0637(96)00095-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1987: Current and temperature variability on the continental slope. Philos. Trans. Roy. Soc. London, 323A, 471517, https://doi.org/10.1098/rsta.1987.0100.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., and K. G. Speer, 2003: Boundary mixing and topographic blocking on the mid-Atlantic ridge in the South Atlantic. J. Phys. Oceanogr., 33, 848862, https://doi.org/10.1175/1520-0485(2003)33<848:bmatbo>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., L. C. St. Laurent, K. G. Speer, J. M. Toole, and J. R. Ledwell, 2005: Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr., 35, 13701381, https://doi.org/10.1175/JPO2773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., K. Dixon, and K. Bryan, 1989: Simulations of radiocarbon in a coarse-resolution World Ocean model: 1. Steady state prebomb distributions. J. Geophys. Res., 94, 82178242, https://doi.org/10.1029/JC094iC06p08217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, https://doi.org/10.3402/tellusa.v34i2.10801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and et al. , 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., J. Callies, and L. N. Thomas, 2018: Submesoscale baroclinic instability in the bottom boundary layer. J. Phys. Oceanogr., 48, 25712592, https://doi.org/10.1175/JPO-D-17-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1970: On oceanic boundary mixing. Deep-Sea Res. Oceanogr. Abstr., 17, 293301, https://doi.org/10.1016/0011-7471(70)90022-7.

  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 304 304 56
Full Text Views 90 89 12
PDF Downloads 98 98 14

Abyssal Circulation Driven by Near-Boundary Mixing: Water Mass Transformations and Interior Stratification

View More View Less
  • 1 MIT–WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 2 Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 3 California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

The emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories.

Corresponding author: Henri F. Drake, henrifdrake@gmail.com

Abstract

The emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories.

Corresponding author: Henri F. Drake, henrifdrake@gmail.com
Save