• Arbic, B. K., and Coauthors, 2018: A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. New Frontiers in Operational Oceanography, E. P. Chassignet et al. Eds., GODAE OceanView, 307–392, https://doi.org/10.17125/gov2018.ch13.

    • Crossref
    • Export Citation
  • Armi, L., and R. C. Millard Jr., 1976: The bottom boundary layer of the deep ocean. J. Geophys. Res., 81, 49834990, https://doi.org/10.1029/JC081i027p04983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., B. Fox-Kemper, J. R. Taylor, and L. N. Thomas, 2017: Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean Modell., 109, 7295, https://doi.org/10.1016/j.ocemod.2016.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banyte, D., D. Smeed, and M. Morales Maqueda, 2018: The weakly stratified bottom boundary layer of the global ocean. J. Geophys. Res. Oceans, 123, 55875598, https://doi.org/10.1029/2018JC013754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., and Coauthors, 2016: Seasonality of submesoscale flows in the ocean surface boundary layer. Geophys. Res. Lett., 43, 21182126, https://doi.org/10.1002/2016GL068009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., N. S. Lucas, S. E. Belcher, T. P. Rippeth, A. L. M. Grant, J. L. Sommer, A. O. Ajayi, and A. C. N. Garabatoand, 2019: The contribution of surface and submesoscale processes to turbulence in the open ocean surface boundary layer. J. Adv. Model. Earth Syst., 11, 40664094, https://doi.org/10.1029/2019MS001801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, D., C. Van Atta, and K. Helland, 1972: A laboratory study of the turbulent Ekman layer. Geophys. Astrophys. Fluid Dyn., 3, 125160, https://doi.org/10.1080/03091927208236078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., 2018: Restratification of abyssal mixing layers by submesoscale baroclinic eddies. J. Phys. Oceanogr., 48, 19952010, https://doi.org/10.1175/JPO-D-18-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. DeSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., and C. Fan, 2011: Maximum angle method for determining mixed layer depth from Seaglider data. J. Oceanogr., 67, 219230, https://doi.org/10.1007/s10872-011-0019-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costello, M. J., A. Cheung, and N. De Hauwere, 2010: Surface area and the seabed area, volume, depth, slope, and topographic variation for the world’s seas, oceans, and countries. Environ. Sci. Technol., 44, 88218828, https://doi.org/10.1021/es1012752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. Oceans, 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., J. Mignot, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the World Ocean: 1. General description. J. Geophys. Res. Oceans, 112, C06011, https://doi.org/10.1029/2006JC003953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020: The seasonality of submesoscale energy production, content, and cascade. Geophys. Res. Lett., 47, e2020GL087388, https://doi.org/10.1029/2020GL087388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Eldevik, T., and K. B. Dysthe, 2002: Spiral eddies. J. Phys. Oceanogr., 32, 851869, https://doi.org/10.1175/1520-0485(2002)032<0851:SE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, https://doi.org/10.1016/j.ocemod.2010.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., S. Bachman, B. Pearson, and S. Reckinger, 2014: Principles and advances in subgrid modelling for eddy-rich simulations. CLIVAR Exchanges, No 19, International CLIVAR Project Office, Southampton, United Kingdom, 42–46.

  • Gula, J., M. Molemaker, and J. McWilliams, 2015: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, https://doi.org/10.1002/2015GL063731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, S., and Coauthors, 2012: Hurricane wake restratification rates of one-, two-and three-dimensional processes. J. Mar. Res., 70, 824850, https://doi.org/10.1357/002224012806770937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N., P. Biscaye, W. Gardner, and W. J. Schmitz Jr., 1982: On the transport and modification of Antarctic bottom water in the Vema Channel. J. Mar. Res., 40, 23l263.

    • Search Google Scholar
    • Export Citation
  • Holte, J., and L. Talley, 2009: A new algorithm for finding mixed layer depths with applications to Argo data and Subantarctic Mode Water formation. J. Atmos. Oceanic Technol., 26, 19201939, https://doi.org/10.1175/2009JTECHO543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosegood, P., M. Gregg, and M. Alford, 2008: Restratification of the surface mixed layer with submesoscale lateral density gradients: Diagnosing the importance of the horizontal dimension. J. Phys. Oceanogr., 38, 24382460, https://doi.org/10.1175/2008JPO3843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P. Q., X. R. Cen, Y. Z. Lu, S. X. Guo, and S. Q. Zhou, 2018: An integrated method for determining the oceanic bottom mixed layer thickness based on WOCE potential temperature profiles. J. Atmos. Oceanic Technol., 35, 22892301, https://doi.org/10.1175/JTECH-D-18-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P. Q., X. R. Cen, Y. Z. Lu, S. X. Guo, and S. Q. Zhou, 2019: Global distribution of the oceanic bottom mixed layer thickness. Geophys. Res. Lett., 46, 15471554, https://doi.org/10.1029/2018GL081159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res., 108, 3079, https://doi.org/10.1029/2000JC000736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, A.-M. Tréguier, D. Iovino, G. Madec, S. Masson, and K. Takahashi, 2010: Modifications of gyre circulation by sub-mesoscale physics. Ocean Modell., 34, 115, https://doi.org/10.1016/j.ocemod.2010.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., R. Ferrari, P. J. Franks, A. P. Martin, and P. Rivière, 2012: Bringing physics to life at the submesoscale. Geophys. Res. Lett., 39, L14602, https://doi.org/10.1029/2012GL052756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. J. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and Coauthors, 2019: Comparing ocean boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst., 11, 35453592, https://doi.org/10.1029/2019MS001810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozovatsky, I., and S. Shapovalov, 2012: Thickness of the mixed bottom layer in the northern Atlantic. Oceanology, 52, 447452, https://doi.org/10.1134/S0001437012010134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monterey, G., and S. Levitus, 1997: Seasonal variability of mixed layer depth for the World Ocean. NOAA Atlas NESDIS 14, 102 pp., ftp://ftp.nodc.noaa.gov/pub/data.nodc/woa/PUBLICATIONS/Atlas14.pdf.

  • Moore, G. E., 1965: Cramming more components onto integrated circuits. Electronics, 19 April, 114–117.

  • Munk, W., L. Armi, K. Fischer, and F. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc. London, 456A, 12171280, https://doi.org/10.1098/rspa.2000.0560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1988: Scale selection of baroclinic instability—Effects of stratification and nongeostrophy. J. Atmos. Sci., 45, 32533268, https://doi.org/10.1175/1520-0469(1988)045<3253:SSOBIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, https://doi.org/10.1175/2010JPO4315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., A. C. Poje, P. F. Fischer, and A. C. Haza, 2011: Large eddy simulations of mixed layer instabilities and sampling strategies. Ocean Modell., 39, 311331, https://doi.org/10.1016/j.ocemod.2011.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and L. A. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22, 609625, https://doi.org/10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis, 2016: Mesoscale to submesoscale wavenumber spectra in Drake Passage. J. Phys. Oceanogr., 46, 601620, https://doi.org/10.1175/JPO-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., and J. Callies, 2020: Mixing-driven mean flows and submesoscale eddies over mid-ocean ridge flanks and fracture zone canyons. J. Phys. Oceanogr., 50, 175195, https://doi.org/10.1175/JPO-D-19-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., A. F. Thompson, M. M. Flexas, and J. Sprintall, 2017: Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning. Nat. Geosci., 10, 840845, https://doi.org/10.1038/ngeo3053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 2001: On the skewness of vorticity in the upper ocean. Geophys. Res. Lett., 28, 20452048, https://doi.org/10.1029/2000GL012265.

  • Rudnick, D. L., and R. Ferrari, 1999: Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283, 526529, https://doi.org/10.1126/science.283.5401.526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, Y. Sasai, and B. Qiu, 2017: Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean. Ocean Dyn., 67, 11951216, https://doi.org/10.1007/s10236-017-1083-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, https://doi.org/10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2018: Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech., 837, 341380, https://doi.org/10.1017/jfm.2017.833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., B. Fox-Kemper, P. E. Hamlington, and L. P. Van Roekel, 2016: Surface waves affect frontogenesis. J. Geophys. Res. Oceans, 121, 35973624, https://doi.org/10.1002/2015JC011563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1994: Mixed layer restratification due to a horizontal density gradient. J. Phys. Oceanogr., 24, 14191424, https://doi.org/10.1175/1520-0485(1994)024<1419:MLRDTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1995: Geostrophic adjustment and restratification of a mixed layer with horizontal gradients above a stratified layer. J. Phys. Oceanogr., 25, 22292241, https://doi.org/10.1175/1520-0485(1995)025<2229:GAAROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2011: Ocean fronts trigger high latitude phytoplankton blooms. Geophys. Res. Lett., 38, L23601, https://doi.org/10.1029/2011GL049312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr. Vol 177, Amer. Geophys. Union, https://doi.org/10.1029/177GM04.

    • Crossref
    • Export Citation
  • Uchida, T., D. Balwada, R. Abernathey, G. McKinley, S. Smith, and M. Levy, 2019: The contribution of submesoscale over mesoscale eddy iron transport in the open Southern Ocean. J. Adv. Model. Earth Syst., 11, 39343958, https://doi.org/10.1029/2019MS001805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umlauf, L., H. Burchard, and K. Bolding, 2005: GOTM: Sourcecode and test case documentation, version 4.0. Tech. Rep. 346 pp., https://gotm.net/manual/stable/pdf/a4.pdf.

  • Wang, Y., and A. L. Stewart, 2018: Eddy dynamics over continental slopes under retrograde winds: Insights from a model inter-comparison. Ocean Modell., 121, 118, https://doi.org/10.1016/j.ocemod.2017.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherly, G. L., and P. J. Martin, 1978: On the structure and dynamics of the oceanic bottom boundary layer. J. Phys. Oceanogr., 8, 557570, https://doi.org/10.1175/1520-0485(1978)008<0557:OTSADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., J. Callies, and L. N. Thomas, 2018: Submesoscale baroclinic instability in the bottom boundary layer. J. Phys. Oceanogr., 48, 25712592, https://doi.org/10.1175/JPO-D-17-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., W. Zhao, X. Liang, J. Dong, and J. Tian, 2017: Elevated mixing in the periphery of mesoscale eddies in the South China Sea. J. Phys. Oceanogr., 47, 895907, https://doi.org/10.1175/JPO-D-16-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Y. Zhang, B. Qiu, H. Sasaki, Z. Sun, X. Zhang, W. Zhao, and J. Tian, 2020: Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations. J. Geophys. Res. Oceans, 125, e2019JC015404, https://doi.org/10.1029/2019JC015404.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 166 166 75
Full Text Views 47 47 19
PDF Downloads 66 66 22

The Scale of Submesoscale Baroclinic Instability Globally

View More View Less
  • 1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
  • 2 Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island
  • 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • 4 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
© Get Permissions
Restricted access

Abstract

The spatial scale of submesoscales is an important parameter for studies of submesoscale dynamics and multiscale interactions. The horizontal spatial scales of baroclinic, geostrophic-branch mixed layer instabilities (MLI) are investigated globally (without the equatorial or Arctic oceans) based on observations and simulations in the surface and bottom mixed layers away from significant topography. Three high-vertical-resolution boundary layer schemes driven with profiles from a MITgcm global submesoscale-permitting model improve robustness. The fastest-growing MLI wavelength decreases toward the poles. The zonal median surface MLI wavelength is 51–2.9 km when estimated from the observations and from 32, 25, and 27 km to 2.5, 1.2, and 1.1 km under the K-profile parameterization (KPP), Mellor–Yamada (MY), and κε schemes, respectively. The surface MLI wavelength has a strong seasonality with a median value 1.6 times smaller in summer (10 km) than winter (16 km) globally from the observations. The median bottom MLI wavelengths estimated from simulations are 2.1, 1.4, and 0.41 km globally under the KPP, MY, and κε schemes, respectively, with little seasonality. The estimated required ocean model grid spacings to resolve wintertime surface mixed layer eddies are 1.9 km (50% of regions resolved) and 0.92 km (90%) globally. To resolve summertime eddies or MLI seasonality requires grids finer than 1.3 km (50%) and 0.55 km (90%). To resolve bottom mixed layer eddies, grids finer than 257, 178, and 51 m (50%) and 107, 87, and 17 m (90%) are estimated under the KPP, MY, and κε schemes.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Changming Dong, cmdong@nuist.edu.cn

Abstract

The spatial scale of submesoscales is an important parameter for studies of submesoscale dynamics and multiscale interactions. The horizontal spatial scales of baroclinic, geostrophic-branch mixed layer instabilities (MLI) are investigated globally (without the equatorial or Arctic oceans) based on observations and simulations in the surface and bottom mixed layers away from significant topography. Three high-vertical-resolution boundary layer schemes driven with profiles from a MITgcm global submesoscale-permitting model improve robustness. The fastest-growing MLI wavelength decreases toward the poles. The zonal median surface MLI wavelength is 51–2.9 km when estimated from the observations and from 32, 25, and 27 km to 2.5, 1.2, and 1.1 km under the K-profile parameterization (KPP), Mellor–Yamada (MY), and κε schemes, respectively. The surface MLI wavelength has a strong seasonality with a median value 1.6 times smaller in summer (10 km) than winter (16 km) globally from the observations. The median bottom MLI wavelengths estimated from simulations are 2.1, 1.4, and 0.41 km globally under the KPP, MY, and κε schemes, respectively, with little seasonality. The estimated required ocean model grid spacings to resolve wintertime surface mixed layer eddies are 1.9 km (50% of regions resolved) and 0.92 km (90%) globally. To resolve summertime eddies or MLI seasonality requires grids finer than 1.3 km (50%) and 0.55 km (90%). To resolve bottom mixed layer eddies, grids finer than 257, 178, and 51 m (50%) and 107, 87, and 17 m (90%) are estimated under the KPP, MY, and κε schemes.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Changming Dong, cmdong@nuist.edu.cn
Save