• Amores, A., O. V. Melnichenko, and N. Maximenko, 2017: Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum. J. Geophys. Res. Oceans, 122, 2341, https://doi.org/10.1002/2016JC012256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assassi, C., and et al. , 2016: An index to distinguish surface- and subsurface-intensified vortices from surface observations. J. Phys. Oceanogr., 46, 25292552, https://doi.org/10.1175/JPO-D-15-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bashmachnikov, I., D. Boutov, and J. Dias, 2013: Manifestation of two meddies in altimetry and sea-surface temperature. Ocean Sci., 9, 249259, https://doi.org/10.5194/os-9-249-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentamy, A., S. A. Grodsky, K. Katsaros, A. M. Mestas-Nuñez, B. Blanke, and F. Desbiolles, 2013: Improvement in air-sea flux estimates derived from satellite observations. Int. J. Remote Sens., 34, 52435261, https://doi.org/10.1080/01431161.2013.787502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., M. L. Texier, G. Eldin, C. Grados, and O. Pizarro, 2011: Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res., 116, C11025, https://doi.org/10.1029/2011JC007134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, https://doi.org/10.1126/science.272.5259.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S. P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, https://doi.org/10.5670/oceanog.2010.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011a: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., P. Gaube, M. G. Schlax, J. J. Early, and R. M. Samelson, 2011b: The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334, 328332, https://doi.org/10.1126/science.1208897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contreras, M. V., O. Pizarro, B. Dewitte, H. H. Sepulveda, and L. Renault, 2019: Subsurface mesoscale eddy generation in the ocean off central Chile. J. Geophys. Res., 124, 57005722, https://doi.org/10.1029/2018JC014723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dilmahamod, A. F., and et al. , 2018: SIDDIES corridor: A major east-west pathway of long-lived surface and subsurface eddies crossing the Subtropical South Indian Ocean. J. Geophys. Res. Oceans, 123, 54065425, https://doi.org/10.1029/2018JC013828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufois, F., N. J. Hardman-mountford, J. Greenwood, A. J. Richardson, M. Feng, and R. J. Matear, 2016: Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Sci. Adv., 2, e1600282, https://doi.org/10.1126/sciadv.1600282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Everett, J. D., M. E. Baird, P. R. Oke, and I. M. Suthers, 2012: An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea. Geophys. Res. Lett., 39, L16608, https://doi.org/10.1029/2012GL053091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, https://doi.org/10.1038/ngeo1863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, P. G. Strutton, and M. J. Behrenfeld, 2013: Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans, 118, 63496370, https://doi.org/10.1002/2013JC009027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, https://doi.org/10.1175/JPO-D-14-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. J. McGillicuddy, and A. J. Moulin, 2018: Mesoscale eddies modulate mixed layer depth globally. Geophys. Res. Lett., 46, 15051512, https://doi.org/10.1029/2018GL080006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., X. Zhai, M. Claus, L. Czeschel, and W. Rath, 2010: Transport driven by eddy momentum fluxes in the Gulf Stream Extension region. Geophys. Res. Lett., 37, L24401, https://doi.org/10.1029/2010GL045473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausmann, U., and A. Czaja, 2012: The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport. Deep-Sea Res. II, 70, 6072, https://doi.org/10.1016/j.dsr.2012.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausmann, U., D. J. McGillicuddy, and J. Marshall, 2017: Observed mesoscale eddy signatures in Southern Ocean surface mixed-layer depth. J. Geophys. Res. Oceans, 122, 617635, https://doi.org/10.1002/2016JC012225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Q., H. Zhan, S. Cai, and G. Zha, 2016: On the asymmetry of eddy-induced surface chlorophyll anomalies in the southeastern Pacific: The role of eddy-Ekman pumping. Prog. Oceanogr., 141, 202211, https://doi.org/10.1016/j.pocean.2015.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, https://doi.org/10.1146/annurev.marine.010908.163704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leyba, I. M., M. Saraceno, and S. A. Solman, 2017: Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions. Climate Dyn., 49, 24912501, https://doi.org/10.1007/s00382-016-3460-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., L. Yu, and G. Chen, 2020: Characterization of sea surface temperature and air-sea heat flux anomalies associated with mesoscale eddies in the South China Sea. J. Geophys. Res. Oceans, 125, e2019JC015470, https://doi.org/10.1029/2019JC015470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., 2015: Formation of intrathermocline lenses by eddy–wind interaction. J. Phys. Oceanogr., 45, 606612, https://doi.org/10.1175/JPO-D-14-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., and et al. , 2007: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 10211026, https://doi.org/10.1126/science.1136256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ni, Q., X. Zhai, G. Wang, and D. P. Marshall, 2020a: Random movement of mesoscale eddies in the global ocean. J. Phys. Oceanogr., 50, 23412357, https://doi.org/10.1175/JPO-D-19-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ni, Q., X. Zhai, G. Wang, and C. W. Hughes, 2020b: Widespread mesoscale dipoles in the global ocean. J. Geophys. Res. Oceans, 125, e2020JC016479, https://doi.org/10.1029/2020JC016479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2001: Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability? J. Phys. Oceanogr., 31, 675687, https://doi.org/10.1175/1520-0485(2001)031<0675:ETOHAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W., C. Dong, W. Tan, and Y. He, 2019: Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the North Pacific based on remote sensing data. Remote Sens., 11, 208, https://doi.org/10.3390/rs11020208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villas Bôas, A. B., O. T. Sato, A. Chaigneau, and G. P. Castelao, 2015: The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean. Geophys. Res. Lett., 42, 18561862, https://doi.org/10.1002/2015GL063105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, R., 1988: Modification of ocean eddies by air-sea interaction. J. Geophys. Res., 93, 15 52315 533, https://doi.org/10.1029/JC093iC12p15523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, C., X. Zhai, and X. Shang, 2016: Work done by atmospheric winds on mesoscale ocean eddies. Geophys. Res. Lett., 43, 12 17412 180, https://doi.org/10.1002/2016GL071275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, and D. P. Marshall, 2010: Significant sink of ocean-eddy energy near western boundaries. Nat. Geosci., 3, 608612, https://doi.org/10.1038/ngeo943.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 303 303 64
Full Text Views 124 124 30
PDF Downloads 156 156 38

Abundant Cold Anticyclonic Eddies and Warm Cyclonic Eddies in the Global Ocean

View More View Less
  • 1 a State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
  • | 2 b Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
  • | 3 c Shanghai Marine Monitoring and Forecasting Center, Shanghai, China
  • | 4 d Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Mesoscale eddies are ubiquitous features of the global ocean circulation and play a key role in transporting ocean properties and modulating air–sea exchanges. Anticyclonic and cyclonic eddies are traditionally thought to be associated with anomalous warm and cold surface waters, respectively. Using satellite altimeter and microwave data, here we show that surface cold-core anticyclonic eddies (CAEs) and warm-core cyclonic eddies (WCEs) are surprisingly abundant in the global ocean—about 20% of the eddies inferred from altimeter data are CAEs and WCEs. Composite analysis using Argo float profiles reveals that the cold cores of CAEs and warm cores of WCEs are generally confined in the upper 50 m. Interestingly, CAEs and WCEs alter air–sea momentum and heat fluxes and modulate mixed layer depth and surface chlorophyll concentration in a way markedly different from the traditional warm-core anticyclonic and cold-core cyclonic eddies. Given their abundance, CAEs and WCEs need to be properly accounted for when assessing and parameterizing the role of ocean eddies in Earth’s climate system.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qinbiao Ni, niqinbiao@outlook.com

Abstract

Mesoscale eddies are ubiquitous features of the global ocean circulation and play a key role in transporting ocean properties and modulating air–sea exchanges. Anticyclonic and cyclonic eddies are traditionally thought to be associated with anomalous warm and cold surface waters, respectively. Using satellite altimeter and microwave data, here we show that surface cold-core anticyclonic eddies (CAEs) and warm-core cyclonic eddies (WCEs) are surprisingly abundant in the global ocean—about 20% of the eddies inferred from altimeter data are CAEs and WCEs. Composite analysis using Argo float profiles reveals that the cold cores of CAEs and warm cores of WCEs are generally confined in the upper 50 m. Interestingly, CAEs and WCEs alter air–sea momentum and heat fluxes and modulate mixed layer depth and surface chlorophyll concentration in a way markedly different from the traditional warm-core anticyclonic and cold-core cyclonic eddies. Given their abundance, CAEs and WCEs need to be properly accounted for when assessing and parameterizing the role of ocean eddies in Earth’s climate system.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qinbiao Ni, niqinbiao@outlook.com
Save