• Aksenov, Y., V. V. Ivanov, A. J. Nurser, S. Bacon, I. V. Polyakov, A. C. Coward, A. C. Naveira-Garabato, and A. Beszczynska-Moeller, 2011: The Arctic circumpolar boundary current. J. Geophys. Res. Oceans, 116, C09017, https://doi.org/10.1029/2010JC006637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barcilon, V., 1964: Role of the Ekman layers in the stability of the symmetric regime obtained in a rotating annulus. J. Atmos. Sci., 21, 291299, https://doi.org/10.1175/1520-0469(1964)021<0291:ROTELI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biddle, L. C. and S. Swart, 2020: The observed seasonal cycle of submesoscale processes in the Antarctic marginal ice zone. J. Geophys. Res. Oceans, 125, e2019JC015587, https://doi.org/10.1029/2019JC015587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, A. M. Treguier, T. Penduff, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104, https://doi.org/10.1016/j.ocemod.2009.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136163, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1949: A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus, 1, 3854, https://doi.org/10.3402/tellusa.v1i2.8500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, S. T., and J. Stadler, 2019: Deepening of the winter mixed layer in the Canada basin, Arctic Ocean over 2006–2017. J. Geophys. Res. Oceans, 124, 46184630, https://doi.org/10.1029/2019JC014940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, S. T., M.-L. Timmermans, J. M. Toole, R. A. Krishfield, and F. T. Thwaites, 2014: Ekman veering, internal waves, and turbulence observed under Arctic Sea Ice. J. Phys. Oceanogr., 44, 13061328, https://doi.org/10.1175/JPO-D-12-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, P., C. Lique, and H. Johnson, 2014: On the link between Arctic Sea ice decline and the freshwater content of the Beaufort Gyre: Insights from a simple process model. J. Climate, 27, 81708184, https://doi.org/10.1175/JCLI-D-14-00090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewey, S., J. Morison, R. Kwok, S. Dickinson, D. Morison, and R. Andersen, 2018: Arctic Ice-Ocean coupling and gyre equilibration observed with remote sensing. Geophys. Res. Lett., 45, 14991508, https://doi.org/10.1002/2017GL076229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doddridge, E., G. Meneghello, J. Marshall, J. Scott, and C. Lique, 2019: A three-way balance in the Beaufort Gyre: The Ice-Ocean Governor, wind stress, and eddy diffusivity. J. Geophys. Res. Oceans, 124, 31073124, https://doi.org/10.1029/2018JC014897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dupont, F., and Coauthors, 2015: A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans. Geosci. Model Dev., 8, 15771594, https://doi.org/10.5194/gmd-8-1577-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1A, 3352, https://doi.org/10.1111/j.2153-3490.1949.tb01265.x.

  • Faghmous, J. H., I. Frenger, Y. Yao, R. Warmka, A. Lindell, and V. Kumar, 2015: A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data, 2, 150028, https://doi.org/10.1038/sdata.2015.28.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horvat, C., E. Tziperman, and J. M. Campin, 2016: Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophys. Res. Lett., 43, 80838090, https://doi.org/10.1002/2016GL069742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunkins, K. L., 1974: Subsurface eddies in the Arctic ocean. Deep-Sea Res., 21, 10171033, https://doi.org/10.1016/0011-7471(74)90064-3.

    • Search Google Scholar
    • Export Citation
  • Hunkins, K. L., 1981: Arctic Ocean eddies and baroclinic instability. Tech. Rep. CU-2-81, Lamont-Doherty Geology Observatory of Columbia University, 39 pp.

  • Isachsen, P. E., J. H. LaCasce, C. Mauritzen, and S. Häkkinen, 2003: Wind-driven variability of the large-scale recirculating flow in the Nordic seas and Arctic Ocean. J. Phys. Oceanogr., 33, 25342550, https://doi.org/10.1175/1520-0485(2003)033<2534:WVOTLR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozlov, I. E., A. V. Artamonova, G. E. Manucharyan, and A. A. Kubryakov, 2019: Eddies in the western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones. J. Geophys. Res. Oceans, 124, 66016616, https://doi.org/10.1029/2019JC015113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., https://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • Madec, G., and NEMO Team, 2016: NEMO ocean engine. Note du Pôle de modélisation de l’Institut Pierre-Simon Laplace 27, 386 pp., https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf.

  • Manley, T. O. and K. Hunkins, 1985: Mesoscale eddies of the Arctic Ocean. J. Geophys. Res., 90, 49114930, https://doi.org/10.1029/JC090IC03P04911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., and M. A. Spall, 2016: Wind-driven freshwater buildup and release in the Beaufort Gyre constrained by mesoscale eddies. Geophys. Res. Lett., 43, 273282, https://doi.org/10.1002/2015GL065957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., and A. F. Thompson, 2017: Submesoscale sea ice-ocean interactions in marginal ice zones. J. Geophys. Res. Oceans, 122, 94559475, https://doi.org/10.1002/2017JC012895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., and P. E. Isachsen, 2019: Critical role of continental slopes in halocline and eddy dynamics of the Ekman-driven Beaufort Gyre. J. Geophys. Res. Oceans, 124, 26792696, https://doi.org/10.1029/2018JC014624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., M. A. Spall, and A. F. Thompson, 2016: A theory of the wind-driven Beaufort Gyre variability. J. Phys. Oceanogr., 46, 32633278, https://doi.org/10.1175/JPO-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghello, G., J. Marshall, S. T. Cole, and M.-L. Timmermans, 2017: Observational inferences of lateral eddy diffusivity in the halocline of the Beaufort Gyre. Geophys. Res. Lett., 44, 12 33112 338, https://doi.org/10.1002/2017GL075126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghello, G., J. Marshall, J.-M. Campin, E. Doddridge, and M.-l. Timmermans, 2018a: The Ice-Ocean Governor: Ice-ocean stress feedback limits Beaufort Gyre spin-up. Geophys. Res. Lett., 45, 11 29311 299, https://doi.org/10.1029/2018GL080171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghello, G., J. Marshall, M. L. Timmermans, and J. Scott, 2018b: Observations of seasonal upwelling and downwelling in the Beaufort Sea mediated by sea ice. J. Phys. Oceanogr., 48, 795805, https://doi.org/10.1175/JPO-D-17-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghello, G., E. Doddridge, J. Marshall, J. Scott, and J.-M. Campin, 2020: Exploring the role of the “ice–ocean governor” and mesoscale eddies in the equilibration of the Beaufort Gyre: Lessons from observations. J. Phys. Oceanogr., 50, 269277, https://doi.org/10.1175/JPO-D-18-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., and M. L. Timmermans, 2017: Characterizing the seasonal cycle of upper-ocean flows under multi-year sea ice. Ocean Modell., 113, 115130, https://doi.org/10.1016/j.ocemod.2017.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, J., 1973: The Canada Basin: Mean circulation and intermediate-scale flow features. Ph.D. dissertation, University of Washington, 316 pp.

  • Newton, J. L., K. Aagaard, and L. K. Coachman, 1974: Baroclinic eddies in the Arctic Ocean. Deep-Sea Res. Oceanogr. Abstr., 21, 707719, https://doi.org/10.1016/0011-7471(74)90078-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nøst, O. A., and P. E. Isachsen, 2003: The large-scale time-mean ocean circulation in the Nordic Seas and Arctic Ocean estimated from simplified dynamics. J. Mar. Res., 61, 175210, https://doi.org/10.1357/002224003322005069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., and S. Bacon, 2014: The Rossby radius in the Arctic Ocean. Ocean Sci., 10, 967975, https://doi.org/10.5194/os-10-967-2014.

  • Ou, H. W., and A. L. Gordon, 1986: Spin-down of baroclinic eddies under sea ice. J. Geophys. Res., 91, 7623, https://doi.org/10.1029/JC091iC06p07623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1982: Geophysical Fluid Dynamics. Springer, 710 pp.

    • Crossref
    • Export Citation
  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 273286, https://doi.org/10.1111/j.2153-3490.1954.tb01123.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramudu, E., R. Gelderloos, D. Yang, C. Meneveau, and A. Gnanadesikan, 2018: Large eddy simulation of heat entrainment under Arctic sea ice. J. Geophys. Res. Oceans, 123, 287304, https://doi.org/10.1002/2017JC013267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regan, H., C. Lique, C. Talandier, and G. Meneghello, 2020: Response of total and eddy kinetic energy to the recent spin up of the Beaufort Gyre. J. Phys. Oceanogr., 50, 575594, https://doi.org/10.1175/JPO-D-19-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricker, R., S. Hendricks, L. Kaleschke X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere, 11, 16071623, https://doi.org/10.5194/tc-11-1607-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousset, C., and Coauthors, 2015: The Louvain-La-Neuve sea ice model LIM3.6: Global and regional capabilities. Geosci. Model Dev., 8, 29913005, https://doi.org/10.5194/gmd-8-2991-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., 2012: Arctic Ocean circulation and variability—Advection and external forcing encounter constraints and local processes. Ocean Sci., 8, 261286, https://doi.org/10.5194/os-8-261-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soufflet, Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu, and R. Benshila, 2016: On effective resolution in ocean models. Ocean Modell., 98, 3650, https://doi.org/10.1016/j.ocemod.2015.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2013: On the circulation of Atlantic water in the Arctic Ocean. J. Phys. Oceanogr., 43, 23522371, https://doi.org/10.1175/JPO-D-13-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2020: Potential vorticity dynamics of the Arctic halocline. J. Phys. Oceanogr., 50, 24912506, https://doi.org/10.1175/JPO-D-20-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. S. Pickart, P. S. Fratantoni, and A. J. Plueddemann, 2008: Western Arctic shelfbreak eddies: Formation and transport. J. Phys. Oceanogr., 38, 16441668, https://doi.org/10.1175/2007JPO3829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. S. Pickart, M. Li, M. Itoh, P. Lin, T. Kikuchi, and Y. Qi, 2018: Transport of Pacific water into the Canada basin and the formation of the Chukchi Slope Current. J. Geophys. Res. Oceans, 123, 74537471, https://doi.org/10.1029/2018JC013825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stabeno, P., and R. McCabe, 2020: Vertical structure and temporal variability of currents over the Chukchi Sea continental slope. Deep-Sea Res. II, 177, 104805, https://doi.org/10.1016/J.DSR2.2020.104805.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1971: Baroclinic stability under non-hydrostatic conditions. J. Fluid Mech., 45, 659671, https://doi.org/10.1017/S0022112071000260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, S., M. D. du Plessis, A. F. Thompson, L. C. Biddle, I. Giddy, T. Linders, M. Mohrmann, and S.-A. Nicholson, 2020: Submesoscale fronts in the Antarctic marginal ice zone and their response to wind forcing. Geophys. Res. Lett., 47, e2019GL086649, https://doi.org/10.1029/2019GL086649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomsen, S., C. Eden, and L. Czeschel, 2014: Stability analysis of the Labrador current. J. Phys. Oceanogr., 44, 445463, https://doi.org/10.1175/JPO-D-13-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and J. Marshall, 2020: Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans, 125, e2018JC014378, https://doi.org/10.1029/2018JC014378.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Marshall, A. Proshutinsky, and J. Scott, 2017: Seasonally derived components of the Canada Basin halocline. Geophys. Res. Lett., 44, 50085015, https://doi.org/10.1002/2017GL073042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L. L., S. Cole, and J. Toole, 2012: Horizontal density structure and restratification of the Arctic Ocean surface layer. J. Phys. Oceanogr., 42, 659668, https://doi.org/10.1175/JPO-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. Krishfield, M.-L. Timmermans, and A. Proshutinsky, 2011: The ice-tethered profiler: Argo of the Arctic. Oceanography, 24, 126135, https://doi.org/10.5670/oceanog.2011.64.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trodahl, M., and P. E. Isachsen, 2018: Topographic influence on baroclinic instability and the mesoscale eddy field in the northern North Atlantic Ocean and the Nordic Seas. J. Phys. Oceanogr., 48, 25932607, https://doi.org/10.1175/JPO-D-17-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. Shafer Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, E., 2011: Beaufort shelf break eddies and shelf-basin exchange of Pacific summer water in the western Arctic Ocean detected by satellite and modeling analyses. J. Geophys. Res. Oceans, 116, C08034, https://doi.org/10.1029/2010JC006259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., and J. B. Robinson, 1974: Generalized Eady waves with Ekman pumping. J. Atmos. Sci., 31, 17681776, https://doi.org/10.1175/1520-0469(1974)031<1768:GEWWEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2002: Ocean observations and the climate forecast problem. Int.l Geophys., 83, 233245, https://doi.org/10.1016/S0074-6142(02)80170-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and M. L. Timmermans, 2015: Vertical scales and dynamics of eddies in the Arctic Ocean’s Canada Basin. J. Geophys. Res. Oceans, 120, 81958209, https://doi.org/10.1002/2015JC011251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., M.-L. Timmermans, S. T. Cole, R. Krishfield, A. Proshutinsky, and J. M. Toole, 2014: Characterizing the eddy field in the Arctic Ocean halocline. J. Geophys. Res. Oceans, 119, 88008817, https://doi.org/10.1002/2014JC010488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., M.-L. Timmermans, R. Krishfield, and G. E. Manucharyan, 2018: Partitioning of kinetic energy in the Arctic Ocean’s Beaufort Gyre. J. Geophys. Res. Oceans, 123, 48064819, https://doi.org/10.1029/2018JC014037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, W., M. Steele, J. Zhang, and J. Zhao, 2018: Greater role of geostrophic currents in Ekman dynamics in the western Arctic Ocean as a mechanism for Beaufort Gyre stabilization. J. Geophys. Res. Oceans, 123, 149165, https://doi.org/10.1002/2017JC013282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2018: Salinity. Vol. 2, World Ocean Atlas 2018, NOAA Atlas NESDIS 82, 50 pp., https://data.nodc.noaa.gov/woa/WOA18/DOC/woa18_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 327 327 100
Full Text Views 57 57 15
PDF Downloads 80 80 26

Genesis and Decay of Mesoscale Baroclinic Eddies in the Seasonally Ice-Covered Interior Arctic Ocean

View More View Less
  • 1 Massachusetts Institute of Technology, Cambridge, Massachusetts
  • 2 Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France
  • 3 University of Oslo, Oslo, Norway
  • 4 Norwegian Meteorological Institute, Oslo, Norway
  • 5 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
© Get Permissions
Restricted access

Abstract

Observations of ocean currents in the Arctic interior show a curious, and hitherto unexplained, vertical and temporal distribution of mesoscale activity. A marked seasonal cycle is found close to the surface: strong eddy activity during summer, observed from both satellites and moorings, is followed by very quiet winters. In contrast, subsurface eddies persist all year long within the deeper halocline and below. Informed by baroclinic instability analysis, we explore the origin and evolution of mesoscale eddies in the seasonally ice-covered interior Arctic Ocean. We find that the surface seasonal cycle is controlled by friction with sea ice, dissipating existing eddies and preventing the growth of new ones. In contrast, subsurface eddies, enabled by interior potential vorticity gradients and shielded by a strong stratification at a depth of approximately 50 m, can grow independently of the presence of sea ice. A high-resolution pan-Arctic ocean model confirms that the interior Arctic basin is baroclinically unstable all year long at depth. We address possible implications for the transport of water masses between the margins and the interior of the Arctic basin, and for climate models’ ability to capture the fundamental difference in mesoscale activity between ice-covered and ice-free regions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0054.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gianluca Meneghello, mgl@mit.edu

Abstract

Observations of ocean currents in the Arctic interior show a curious, and hitherto unexplained, vertical and temporal distribution of mesoscale activity. A marked seasonal cycle is found close to the surface: strong eddy activity during summer, observed from both satellites and moorings, is followed by very quiet winters. In contrast, subsurface eddies persist all year long within the deeper halocline and below. Informed by baroclinic instability analysis, we explore the origin and evolution of mesoscale eddies in the seasonally ice-covered interior Arctic Ocean. We find that the surface seasonal cycle is controlled by friction with sea ice, dissipating existing eddies and preventing the growth of new ones. In contrast, subsurface eddies, enabled by interior potential vorticity gradients and shielded by a strong stratification at a depth of approximately 50 m, can grow independently of the presence of sea ice. A high-resolution pan-Arctic ocean model confirms that the interior Arctic basin is baroclinically unstable all year long at depth. We address possible implications for the transport of water masses between the margins and the interior of the Arctic basin, and for climate models’ ability to capture the fundamental difference in mesoscale activity between ice-covered and ice-free regions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0054.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gianluca Meneghello, mgl@mit.edu

Supplementary Materials

    • Supplemental Materials (ZIP 90.8 MB)
Save