• Agee, E. M., and S. J. Childs, 2014: Adjustments in tornado counts, F-scale intensity, and path width for assessing significant tornado destruction. J. Appl. Meteor. Climatol., 53, 14941505, https://doi.org/10.1175/JAMC-D-13-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/149.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015a: An empirical model relating us monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226243, https://doi.org/10.1002/2014MS000397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015b: Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci., 8, 278283, https://doi.org/10.1038/ngeo2385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, https://doi.org/10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and S. M. Strader, 2016: Recipe for disaster: How the dynamic ingredients of risk and exposure are changing the tornado disaster landscape. Bull. Amer. Meteor. Soc., 97, 767786, https://doi.org/10.1175/BAMS-D-15-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., S. M. Strader, T. Rosencrants, and A. J. Krmenec, 2014: Spatiotemporal changes in tornado hazard exposure: The case of the expanding bull’s-eye effect in Chicago, Illinois. Wea. Climate Soc., 6, 175193, https://doi.org/10.1175/WCAS-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., R. K. Goldstein, and D. E. Stevens, 2003: Monte Carlo simulation of solar reflectances for cloudy atmospheres. J. Atmos. Sci., 60, 18811894, https://doi.org/10.1175/1520-0469(2003)060<1881:MCSOSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouwer, L. M., 2011: Have disaster losses increased due to anthropogenic climate change? Bull. Amer. Meteor. Soc., 92, 3946, https://doi.org/10.1175/2010BAMS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouwer, L. M., 2013: Projections of future extreme weather losses under changes in climate and exposure. Risk Anal., 33, 915930, https://doi.org/10.1111/j.1539-6924.2012.01880.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouwer, L. M., 2019: Observed and projected impacts from extreme weather events: Implications for loss and damage. Loss and Damage from Climate Change, Springer, 6382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brady, R. H., and E. J. Szoke, 1989: A case study of nonmesocyclone tornado development in northeast Colorado: Similarities to waterspout formation. Mon. Wea. Rev., 117, 843856, https://doi.org/10.1175/1520-0493(1989)117<0843:ACSONT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brimelow, J. C., W. R. Burrows, and J. M. Hanesiak, 2017: The changing hail threat over North American in response to anthropogenic climate change. Nat. Climate Change, 7, 516522, https://doi.org/10.1038/nclimate3321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2004: On the relationship of tornado path length and width to intensity. Wea. Forecasting, 19, 310319, https://doi.org/10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2009: Proximity soundings for severe convection for Europe and the United States from reanalysis data. Atmos. Res., 93, 546553, https://doi.org/10.1016/j.atmosres.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2013: Severe thunderstorms and climate change. Atmos. Res., 123, 129138, https://doi.org/10.1016/j.atmosres.2012.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003a: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003b: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, https://doi.org/10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CBS4 Denver, 2019: Cheyenne Mountain Zoo rebuilds after devastating hail storm. Accessed 3 March 2020, https://denver.cbslocal.com/2019/01/25/cheyenne-mountain-zoo-hail-storm-colorado-springs/.

  • Center for International Earth Science Information Network, 2011: Global Rural-Urban Mapping Project (GRUMP), version 1. NASA Socioeconomic Data and Applications Center, accessed 20 May 2019, http://sedac.ciesin.columbia.edu/data/collection/grump-v1.

  • Changnon, S. A., 1999: Data and approaches for determining hail risk in the contiguous United States. J. Appl. Meteor., 38, 17301739, https://doi.org/10.1175/1520-0450(1999)038<1730:DAAFDH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2009: Increasing major hail losses in the U.S. Climatic Change, 96, 161166, https://doi.org/10.1007/s10584-009-9597-z.

  • Changnon, S. A., R. Pielke Jr., D. Changnon, R. Sylves, and R. Pulwarty, 2000: Human factors explain the increased losses from weather and climate extremes. Bull. Amer. Meteor. Soc., 81, 437442, https://doi.org/10.1175/1520-0477(2000)081<0437:HFETIL>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., A. Dai, Y. Zhang, and K. L. Rasmussen, 2020: Changes in convective available potential energy and convective inhibition under global warming. J. Climate, 33, 20252050, https://doi.org/10.1175/JCLI-D-19-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, S. J., and R. S. Schumacher, 2018a: Cold-season tornado risk communication: Case studies from November 2016 to February 2017. Wea. Climate Soc., 10, 419433, https://doi.org/10.1175/WCAS-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, S. J., and R. S. Schumacher, 2018b: The anomalously large 2018 hail season of eastern Colorado: A local perspective on a national trend. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 33, https://ams.confex.com/ams/29SLS/webprogram/Paper348238.html.

    • Search Google Scholar
    • Export Citation
  • Childs, S. J., and R. S. Schumacher, 2019: An updated severe hail and tornado climatology for eastern Colorado. J. Appl. Meteor. Climatol., 58, 22732293, https://doi.org/10.1175/JAMC-D-19-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., J. Gao, P. T. Marsh, T. Smith, J. S. Kain, J. Correia, M. Xue, and F. Kong, 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387407, https://doi.org/10.1175/WAF-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., J. S. Kain, P. T. Marsh, J. Correia Jr., M. Xue, and F. Kong, 2012: Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 10901113, https://doi.org/10.1175/WAF-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colorado State Demography Office, 2012: Projected population change: 2010 to 2040. CSDO, https://storage.googleapis.com/maps-static/TotalPopChange2010_2040.pdf.

  • Colorado State University, 2012: The contribution of agriculture to Colorado’s economy: An executive summary—January 2012. State of Colorado, https://www.colorado.gov/pacific/sites/default/files/CSU%20Executive%20Summary.pdf.

  • Creighton, G., E. Kuchera, R. Adams-Selin, J. McCormick, S. Rentschler, and B. Wickard, 2014: AFWA diagnostics in WRF. Air Force Weather Agency, 2nd Weather Group Doc., 17 pp., https://www2.mmm.ucar.edu/wrf/users/docs/AFWA_Diagnostics_in_WRF.pdf.

  • Cutter, S. L., J. T. Mitchell, and M. S. Scott, 2000: Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Ann. Assoc. Amer. Geogr., 90, 713737, https://doi.org/10.1111/0004-5608.00219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czajkowski, J., and K. M. Simmons, 2014: Convective storm vulnerability: Quantifying the role of effective and well-enforced building codes in minimizing Missouri hail property damage. Land Econ., 90, 482508, https://doi.org/10.3368/le.90.3.482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessens, J., C. Berthet, and J. L. Sanchez, 2015: Change in hailstone size distributions with an increase in the melting level height. Atmos. Res., 158–159, 245253, https://doi.org/10.1016/j.atmosres.2014.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 36116 366, https://doi.org/10.1073/pnas.1307758110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., 1980: Synoptic-scale environments associated with high plains severe thunderstorms. Bull. Amer. Meteor. Soc., 61, 13881400, https://doi.org/10.1175/1520-0477(1980)061<1388:SSEAWH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebi, K. L., and Coauthors, 2014: A new scenario framework for climate change research: Background, process, and future directions. Climatic Change, 122, 363372, https://doi.org/10.1007/s10584-013-0912-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., and R. L. Thompson, 1998: Nationwide comparisons of hail size with WSR-88D vertically integrated liquid water and derived sounding data. Wea. Forecasting, 13, 277285, https://doi.org/10.1175/1520-0434(1998)013<0277:NCOHSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farney, T. J., and P. G. Dixon, 2015: Variability of tornado climatology across the continental United States. Int. J. Climatol., 35, 29933006, https://doi.org/10.1002/joc.4188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., A. J. Clark, and S. R. Dembek, 2016: Forecasting tornadoes using convection-permitting ensembles. Wea. Forecasting, 31, 273295, https://doi.org/10.1175/WAF-D-15-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed spring forecasting experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., 2017: Downscaling global spatial population projections from 1/8-degree to 1-km grid cells. NCAR Tech. Note NCAR/TN-537+STR, 14 pp., https://doi.org/10.5065/D60Z721H.

    • Crossref
    • Export Citation
  • Gensini, V. A., and T. L. Mote, 2014: Estimations of hazardous convective weather in the United States using dynamical downscaling. J. Climate, 27, 65816589, https://doi.org/10.1175/JCLI-D-13-00777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and T. L. Mote, 2015: Downscaled estimates of late 21st century severe weather from CCSM3. Climatic Change, 129, 307321, https://doi.org/10.1007/s10584-014-1320-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and H. E. Brooks, 2018: Spatial trends in United States tornado frequency. npj Climate Atmos. Sci., 1, 38, https://doi.org/10.1038/s41612-018-0048-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoogewind, K. A., M. E. Baldwin, and R. J. Trapp, 2017: The impact of climate change on hazardous convective weather in the United States: Insight from high-resolution dynamical downscaling. J. Climate, 30, 10 08110 100, https://doi.org/10.1175/JCLI-D-16-0885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp., https://www.ipcc.ch/site/assets/uploads/2018/03/SREX_Full_Report-1.pdf.

  • Jones, B., and B. C. O’Neill, 2013: Historically grounded spatial population projections for the continental United States. Environ. Res. Lett., 8, 044021, https://doi.org/10.1088/1748-9326/8/4/044021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, B., and B. C. O’Neill, 2016: Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett., 11, 084003, https://doi.org/10.1088/1748-9326/11/8/084003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R., D. Rodgers, W. Deitrich, and D. Bartels, 1981: Meteorological settings associated with significant convective storms in Colorado. NOAA Tech. Memo ERL OWRM-4, 75 pp.

  • Mahoney, K., M. A. Alexander, G. Thompson, J. J. Barsugli, and J. D. Scott, 2012: Changes in hail and flood risk in high-resolution simulations over Colorado’s mountains. Nat. Climate Change, 2, 125131, https://doi.org/10.1038/nclimate1344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., A. Hering, M. Kunz, A. Manzato, S. Mohr, L. Nisi, and S. Trefalt, 2018: Challenges and recent advances in hail research. Bull. Amer. Meteor. Soc., 99, ES51ES54, https://doi.org/10.1175/BAMS-D-17-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martynov, A., L. Nisi, and O. Martius, 2017: Summertime hailstorms over Switzerland in 2012–2015 in convection-permitting WRF simulations: Assessment of modeling performance. Geophysical Research Abstracts, Vol. 19, Abstract 7501, https://meetingorganizer.copernicus.org/EGU2017/EGU2017-7501.pdf.

  • Mooney, C. Z., 1997: Monte Carlo Simulation. Sage Publications, 103 pp.

    • Crossref
    • Export Citation
  • Morss, R. E., O. V. Wilhelmi, G. A. Meehl, and L. Dilling, 2011: Improving societal outcomes of extreme weather in a changing climate: An integrated perspective. Annu. Rev. Environ. Resour., 36, 125, https://doi.org/10.1146/annurev-environ-060809-100145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morss, R. E., K. J. Mulder, J. K. Lazo, and J. L. Demuth, 2016: How do people perceive, understand, and anticipate responding to flash flood risks and warnings? Results from a public survey in Boulder, Colorado, USA. J. Hydrol., 541, 649664, https://doi.org/10.1016/j.jhydrol.2015.11.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagele, D. E., and J. E. Trainor, 2012: Geographic specificity, tornadoes, and protective action. Wea. Climate Soc., 4, 145155, https://doi.org/10.1175/WCAS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and R. Swart, Eds., 2000: IPCC Special Report on Emissions Scenarios. Cambridge University Press, 570 pp.

  • National Research Council, 2009: Science and Decisions: Advancing Risk Assessment. The National Academies Press, 422 pp.

  • O’Neill, B. C., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, and D. P. van Vuuren, 2013: A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122, 387400, https://doi.org/10.1007/s10584-013-0905-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paul, B. K., 2011: Environmental Hazards: Contexts, Perspectives and Management. John Wiley and Sons, 334 pp.

  • Pielke, R., Jr., and E. Mills, 2005: Attribution of disaster losses. Science, 310, 16151616, https://doi.org/10.1126/science.310.5754.1615c.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., C. Broyles, P. S. Skinner, H. E. Brooks, and E. Rasmussen, 2019: A Bayesian hierarchical modeling framework for correcting reporting bias in the US tornado database. Wea. Forecasting, 34, 1530, https://doi.org/10.1175/WAF-D-18-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and G. J. Holland, 2018: Global estimates of damaging hail hazard. Wea. Climate Extremes, 22, 1023, https://doi.org/10.1016/j.wace.2018.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and H. R. Pruppacher, 1982: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius < 500 μm. J. Atmos. Sci., 39, 152158, https://doi.org/10.1175/1520-0469(1982)039<0152:AWTATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., A. F. Prein, R. M. Rasmussen, K. Ikeda, and C. Liu, 2020: Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dyn., https://doi.org/10.1007/s00382-017-4000-7, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, T., 2019: Ehrlich Toyota planning solar carport to mitigate hail damage, generate power. Greeley Tribune, 11 March 2019, accessed 3 March 2020, https://www.greeleytribune.com/news/ehrlich-toyota-planning-solar-carport-to-mitigate-hail-damage-generate-power/.

  • Robinson, E. D., R. J. Trapp, and M. E. Baldwin, 2013: The geospatial and temporal distributions of severe thunderstorms from high-resolution dynamical downscaling. J. Appl. Meteor. Climatol., 52, 21472161, https://doi.org/10.1175/JAMC-D-12-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocky Mountain Insurance Information Association, 2019: Hail damage and statistics. RMIIA, accessed 12 September 2019, http://www.rmiia.org/catastrophes_and_statistics/Hail.asp.

  • Rosencrants, T. D., and W. S. Ashley, 2015: Spatiotemporal analysis of tornado exposure in five US metropolitan areas. Nat. Hazards, 78, 121140, https://doi.org/10.1007/s11069-015-1704-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samir, K. C., and W. Lutz, 2017: The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environ. Change, 42, 181192, https://doi.org/10.1016/j.gloenvcha.2014.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R., 2019: Colorado State record hailstone near Bethune. State Climate Extremes Committee Memo., 10 pp., https://www.ncdc.noaa.gov/monitoring-content/extremes/scec/reports/20191004-Colorado-Hailstone.pdf.

  • Seeley, J. T., and D. M. Romps, 2015: The effect of global warming on severe thunderstorms in the United States. J. Climate, 28, 24432458, https://doi.org/10.1175/JCLI-D-14-00382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. B., 2019: 2018’s billion dollar disasters in context. NOAA, https://www.climate.gov/news-features/blogs/beyond-data/2018s-billion-dollar-disasters-context.

  • Smith, A. B., and J. L. Matthews, 2015: Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates. Nat. Hazards, 77, 18291851, https://doi.org/10.1007/s11069-015-1678-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., 2018: Identifying severe convection in convection-permitting weather forecasts: State of the science and applications to convection-permitting climate simulations. Preprints, Second GEWEX Convection-Permitting Climate Modeling Workshop, Boulder, CO, NCAR, https://ral.ucar.edu/sites/default/files/public/events/2018/gewex-convection-permitting-climate-modeling-workshop-ii/docs/thursday-cpm-workshop.-sobash.pdf.

  • Sobash, R. A., and J. S. Kain, 2017: Seasonal variations in severe weather forecast skill in an experimental convection-allowing model. Wea. Forecasting, 32, 18851902, https://doi.org/10.1175/WAF-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., D. R. Bright, A. R. Dean, J. S. Kain, M. Coniglio, S. J. Weiss, and J. J. Levit, 2008: Severe storm forecast guidance based on explicit identification of convective phenomena in WRF-model forecasts. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 11.3, https://ams.confex.com/ams/24SLS/techprogram/paper_142187.htm.

  • Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio, and S. J. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, https://doi.org/10.1175/WAF-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, K. R. Fossell, and M. L. Weisman, 2016: Severe weather prediction using storm surrogates from an ensemble forecasting system. Wea. Forecasting, 31, 255271, https://doi.org/10.1175/WAF-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and M. K. Tippett, 2018: Extreme events: Trends and risk assessment methodologies. Resilience: The Science of Adaptation to Climate Change, Elsevier, 312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohl, T. L., Dornbierer, J. M., and S. Wilka, 2018: 33 high-resolution scenarios of land use and vegetation change in the Great Plains Landscape Conservation Cooperative region. U.S. Geological Survey data release, https://doi.org/10.5066/F7XW4J03.

    • Crossref
    • Export Citation
  • Strader, S. M., T. J. Pingel, and W. S. Ashley, 2016: A Monte Carlo model for estimating tornado impacts. Meteor. Appl., 23, 269281, https://doi.org/10.1002/met.1552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strader, S. M., W. S. Ashley, T. J. Pingel, and A. J. Krmenec, 2017: Projected 21st century changes in tornado exposure, risk, and disaster potential. Climatic Change, 141, 301313, https://doi.org/10.1007/s10584-017-1905-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szoke, E., M. Weisman, J. Brown, F. Caracena, and T. Schlatter, 1984: A subsynoptic analysis of the Denver tornadoes of 3 June 1981. Mon. Wea. Rev., 112, 790808, https://doi.org/10.1175/1520-0493(1984)112<0790:ASAOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B. H., V. A. Gensini, and C. R. Homeyer, 2019: Trends in United States large hail environments and observations. npj Climate Atmos. Sci., 2, 45, https://doi.org/10.1038/s41612-019-0103-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. T. Allen, V. Gensini, and H. E. Brooks, 2015: Climate and hazardous convective wccurr. Curr. Climate Change Rep., 1, 6073, https://doi.org/10.1007/s40641-015-0006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and K. A. Hoogewind, 2016: The realization of extreme tornadic storm events under future anthropogenic climate change. J. Climate, 29, 52515265, https://doi.org/10.1175/JCLI-D-15-0623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S. Pal, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, https://doi.org/10.1073/pnas.0705494104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., E. D. Robinson, M. E. Baldwin, N. S. Diffenbaugh, and B. R. Schwedler, 2011: Regional climate of hazardous convective weather through high-resolution dynamical downscaling. Climate Dyn., 37, 677688, https://doi.org/10.1007/s00382-010-0826-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., K. A. Hoogewind, and S. Lasher-Trapp, 2019: Future changes in hail occurrence in the United States determined through convection-permitting dynamical downscaling. J. Climate, 32, 54935509, https://doi.org/10.1175/JCLI-D-18-0740.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. EPA, 2016: Updates to the demographic and spatial allocation models to produce Integrated Climate and Land Use Scenarios (ICLUS) (version 2). U.S. Environmental Protection Agency External Review Draft EPA/600/R-16/366F, 134 pp.

  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, https://doi.org/10.1175/WAF910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visser, H., A. Petersen, and W. Ligtvoet, 2014: On the relation between weather-related disaster impacts, vulnerability and climate change. Climatic Change, 125, 461477, https://doi.org/10.1007/s10584-014-1179-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., J. A. Moore, G. B. Foote, B. Martner, A. R. Rodi, T. Uttal, and J. M. Wilczak, 1988: Convection Initiation and Downburst Experiment (CINDE). Bull. Amer. Meteor. Soc., 69, 13281347, https://doi.org/10.1175/1520-0477(1988)069<1328:CIADE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, B., Q. Zhang, and Y. Wang, 2010: Observed characteristics of hail size in four regions in China during 1980–2005. J. Climate, 23, 49734982, https://doi.org/10.1175/2010JCLI3600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yavuz, V., Akbayir, I., Özen, C., and A. Deniz, 2017: Analysis of hail incident for two different provinces in Turkey: A case study using synoptic analysis and numerical weather prediction model (WRF). Int. J. Eng. Sci., 7, 15 82215 866.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Zheng, 2006: Monte Carlo solution of wet removal of aerosols by precipitation. Atmos. Environ., 40, 15101525, https://doi.org/10.1016/j.atmosenv.2005.10.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 126 126 107
Full Text Views 14 14 8
PDF Downloads 15 15 9

Projecting End-of-Century Human Exposure from Tornadoes and Severe Hailstorms in Eastern Colorado: Meteorological and Population Perspectives

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • 2 Department of Geography and Environment, Villanova University, Villanova, Pennsylvania
© Get Permissions
Restricted access

Abstract

Severe convective storms along the Front Range and eastern plains of Colorado frequently produce tornadoes and hail, leading to substantial damage and crop losses annually. Determination of future human exposure from these events must consider both changes in meteorological conditions and population dynamics. Projections of EF0 + tornadoes (on the enhanced Fujita scale) and severe [1.0+ in. (25.4+ mm)] hail reports out to the year 2100 are computed using convective parameter proxies generated from dynamically downscaled GFDL Climate Model, version 3 (GFDL CM3), output by the WRF Model for control and future climate scenarios. The proxies suggest that tornado and hail days in the region may increase by up to one tornado day and three hail days per year by 2100, with the greatest increases across northeastern Colorado. Using a spatially explicit Monte Carlo model, projected future frequency and spatial changes in tornadoes and hail are superimposed with population projections from the shared socioeconomic pathways (SSPs) to provide a range of possible scenarios for end-of-century human exposure to tornadoes and hailstorms. Changes in hazard frequency and spatial distribution may amplify human exposure up to 117% for tornadoes and 178% for hail in the region by 2100, although specific results are sensitive to uncertain combinations of future overlaps between hazard spatial distribution and population. Findings presented herein not only will provide the public, insurers, policy makers, land-use planners, and researchers with estimates of potential future tornado and hail impacts in the Front Range region, they also will allow the weather enterprise to better understand, prepare for, and communicate tornado and hail risk to eastern Colorado communities.

Corresponding author: Samuel J. Childs, sjchilds@rams.colostate.edu

Abstract

Severe convective storms along the Front Range and eastern plains of Colorado frequently produce tornadoes and hail, leading to substantial damage and crop losses annually. Determination of future human exposure from these events must consider both changes in meteorological conditions and population dynamics. Projections of EF0 + tornadoes (on the enhanced Fujita scale) and severe [1.0+ in. (25.4+ mm)] hail reports out to the year 2100 are computed using convective parameter proxies generated from dynamically downscaled GFDL Climate Model, version 3 (GFDL CM3), output by the WRF Model for control and future climate scenarios. The proxies suggest that tornado and hail days in the region may increase by up to one tornado day and three hail days per year by 2100, with the greatest increases across northeastern Colorado. Using a spatially explicit Monte Carlo model, projected future frequency and spatial changes in tornadoes and hail are superimposed with population projections from the shared socioeconomic pathways (SSPs) to provide a range of possible scenarios for end-of-century human exposure to tornadoes and hailstorms. Changes in hazard frequency and spatial distribution may amplify human exposure up to 117% for tornadoes and 178% for hail in the region by 2100, although specific results are sensitive to uncertain combinations of future overlaps between hazard spatial distribution and population. Findings presented herein not only will provide the public, insurers, policy makers, land-use planners, and researchers with estimates of potential future tornado and hail impacts in the Front Range region, they also will allow the weather enterprise to better understand, prepare for, and communicate tornado and hail risk to eastern Colorado communities.

Corresponding author: Samuel J. Childs, sjchilds@rams.colostate.edu
Save