• Achebak, H., D. Devolder, and J. Ballester, 2018: Heat-related mortality trends under recent climate warming in Spain: A 36-year observational study. PLOS Med., 15, e1002617, https://doi.org/10.1371/journal.pmed.1002617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. J., and S. C. Sheridan, 2018: Mortality risks during extreme temperature events (ETEs) using a distributed lag non-linear model. Int. J. Biometeor., 62, 5767, https://doi.org/10.1007/s00484-015-1117-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, G. B., and M. L. Bell, 2011: Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect., 119, 210218, https://doi.org/10.1289/ehp.1002313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, G. B., M. L. Bell, and R. D. Peng, 2013: Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect., 121, 11111119, https://doi.org/10.1289/ehp.1206273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, B., and Coauthors, 2019. The role of humidity in associations of high temperature with mortality: A multicountry, multicity study. Environ. Health Perspect., 127, 097007, https://doi.org/10.1289/EHP5430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Åström, D. O., B. Forsberg, S. Edvinsson, and J. Rocklöv, 2013: Acute fatal effects of short-lasting extreme temperatures in Stockholm, Sweden: Evidence across a century of change. Epidemiology, 24, 820829, https://doi.org/10.1097/01.ede.0000434530.62353.0b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Åström, D. O., K. L. Ebi, A. M. Vicedo-Cabrera, and A. Gasparrini, 2018: Investigating changes in mortality attributable to heat and cold in Stockholm, Sweden. Int. J. Biometeor., 62, 17771780, https://doi.org/10.1007/s00484-018-1556-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barreca, A., K. Clay, O. Deschenes, M. Greenstone, and J. S. Shapiro, 2016: Adapting to climate change: The remarkable decline in the US temperature-mortality relationship over the twentieth century. J. Polit. Econ., 124, 105159, https://doi.org/10.1086/684582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blazejczyk, K., Y. Epstein, G. Jendritzky, H. Staiger, and B. Tinz, 2012: Comparison of UTCI to selected thermal indices. Int. J. Biometeor., 56, 515535, https://doi.org/10.1007/s00484-011-0453-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bobb, J. F., R. D. Peng, M. L. Bell, and F. Dominici, 2014: Heat-related mortality and adaptation to heat in the United States. Environ. Health Perspect., 122, 811816, https://doi.org/10.1289/ehp.1307392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boeckmann, M., and I. Rohn, 2014: Is planned adaptation to heat reducing heat-related mortality and illness? A systematic review. BMC Public Health, 14, 1112, https://doi.org/10.1186/1471-2458-14-1112

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broadbent, A. M., E. S. Krayenhoff, and M. Georgescu, 2020: The motley drivers of heat and cold exposure in 21st century US cities. Proc. Natl. Acad. Sci. USA, 117, 21 10821 117, https://doi.org/10.1073/pnas.2005492117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bureau of Labor Statistics, 2020: Foreign-born workers: Labor-force characteristics—2019. Bureau of Labor Statistics Rep. USDL-20-0922, 14 pp., https://www.bls.gov/news.release/pdf/forbrn.pdf.

  • Chambers, J., 2020: Global and cross-country analysis of exposure of vulnerable populations to heatwaves from 1980 to 2018. Climatic Change, 163, 539558, https://doi.org/10.1007/s10584-020-02884-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davy, R., I. Esau, A. Chernokulsky, S. Outten, and S. Zilitinkevich, 2017: Diurnal asymmetry to the observed global warming. Int. J. Climatol., 37, 7993, https://doi.org/10.1002/joc.4688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Díaz, J., C. Linares, and A. Tobías, 2006: Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45–64 age-group. Int. J. Biometeor., 50, 342348, https://doi.org/10.1007/s00484-006-0033-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., and Coauthors, 2005: Heat mortality versus cold mortality: A study of conflicting databases in the United States. Bull. Amer. Meteor. Soc., 86, 937944, https://doi.org/10.1175/BAMS-86-7-937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folkerts, M. A., P. Bröde, W. W. Botzen, M. L. Martinius, N. Gerrett, C. N. Harmsen, and H. A. Daanen, 2020: Long term adaptation to heat stress: Shifts in the minimum mortality temperature in the Netherlands. Front. Physiol., 11, 225, https://doi.org/10.3389/fphys.2020.00225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fouillet, A., and Coauthors, 2008: Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int. J. Epidemiol., 37, 309317, https://doi.org/10.1093/ije/dym253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparrini, A., and M. Leone, 2014: Attributable risk from distributed lag models. BMC Med. Res. Methodol., 14, 55, https://doi.org/10.1186/1471-2288-14-55.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparrini, A., B. Armstrong, and M. G. Kenward, 2010: Distributed lag non-linear models. Stat. Med., 29, 22242234, https://doi.org/10.1002/sim.3940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparrini, A., and Coauthors, 2015a: Temporal variation in heat-mortality associations: A multicountry study. Environ. Health Perspect., 123, 12001207, https://doi.org/10.1289/ehp.1409070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparrini, A., and Coauthors, 2015b: Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet, 386, 369375, https://doi.org/10.1016/S0140-6736(14)62114-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparrini, A., F. Sera, and M. A. Gasparrini, 2020: Package mixmeta, version 1.1.0. R package, https://cran.r-project.org/web/packages/mixmeta/mixmeta.pdf.

  • Green, H., J. Bailey, L. Schwarz, J. Vanos, K. Ebi, and T. Benmarhnia, 2019: Impact of heat on mortality and morbidity in low and middle income countries: A review of the epidemiological evidence and considerations for future research. Environ. Res., 171, 8091, https://doi.org/10.1016/j.envres.2019.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gronlund, C. J., A. Zanobetti, J. D. Schwartz, G. A. Wellenius, and M. S. O’Neill, 2014: Heat, heat waves, and hospital admissions among the elderly in the United States, 1992–2006. Environ. Health Perspect., 122, 11871192, https://doi.org/10.1289/ehp.1206132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gronlund, C. J., K. P. Sullivan, Y. Kefelegn, L. Cameron, and M. S. O’Neill, 2018: Climate change and temperature extremes: A review of heat-and cold-related morbidity and mortality concerns of municipalities. Maturitas, 114, 5459, https://doi.org/10.1016/j.maturitas.2018.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grothmann, T., M. Leitner, N. Glas, and A. Prutsch, 2017: A five-steps methodology to design communication formats that can contribute to behavior change: The example of communication for health-protective behavior among elderly during heat waves. SAGE Open, 7, 2158244017692014 https://doi.org/10.1177/2158244017692014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gubernot, D. M., G. B. Anderson, and K. L. Hunting, 2015: Characterizing occupational heat-related mortality in the United States, 2000–2010: An analysis using the census of fatal occupational injuries database. Amer. J. Ind. Med., 58, 203211, https://doi.org/10.1002/ajim.22381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., and Coauthors, 2014: Global variation in the effects of ambient temperature on mortality: A systematic evaluation. Epidemiology, 25, 781789, https://doi.org/10.1097/EDE.0000000000000165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajat, S., and T. Kosatky, 2010: Heat-related mortality: A review and exploration of heterogeneity. J. Epidemiol. Community Health, 64, 753760, https://doi.org/10.1136/jech.2009.087999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajat, S., B. G. Armstrong, N. Gouveia, and P. Wilkinson, 2005: Mortality displacement of heat-related deaths: A comparison of Delhi, Sao Paulo, and London. Epidemiology, 16, 613620, https://doi.org/10.1097/01.ede.0000164559.41092.2a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M., A. Singer, G. F. DeJong, and D. R. Graefe, 2011: The geography of immigrant skills: Educational profiles of metropolitan areas. Brookings Institute Rep., 32 pp., https://www.brookings.edu/wp-content/uploads/2016/06/06_immigrants_singer.pdf.

  • Harlan, S., P. Chakalian, J. Declet-Barreto, D. Hondula, and D. Jenerette, 2019: Climate injustice in cities: Extreme heat and poor neighborhoods. 2019 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract GH34A-03.

  • Hondula, D. M., R. E. Davis, M. V. Saha, C. R. Wegner, and L. M. Veazey, 2015: Geographic dimensions of heat-related mortality in seven US cities. Environ. Res., 138, 439452, https://doi.org/10.1016/j.envres.2015.02.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howe, P. D., J. R. Marlon, X. Wang, and A. Leiserowitz, 2019: Public perceptions of the health risks of extreme heat across US states, counties, and neighborhoods. Proc. Natl. Acad. Sci. USA, 116, 67436748, https://doi.org/10.1073/pnas.1813145116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, V., D. Ibarreta, and K. Frieler, 2017: Cold-and heat-related mortality: A cautionary note on current damage functions with net benefits from climate change. Climatic Change, 142, 407418, https://doi.org/10.1007/s10584-017-1956-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaksen, T. B., R. A. Fenske, E. K. Hom, Y. Ren, H. Lyons, and M. G. Yost, 2016: Increased mortality associated with extreme-heat exposure in King County, Washington, 1980–2010. Int. J. Biometeor., 60, 8598, https://doi.org/10.1007/s00484-015-1007-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., and R. E. Davis, 1989: Weather and human mortality: An evaluation of demographic and interregional responses in the United States. Ann. Assoc. Amer. Geogr., 79, 4464, https://doi.org/10.1111/j.1467-8306.1989.tb00249.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubega, W. N., and A. S. Stillwell, 2018: Maintaining electric grid reliability under hydrologic drought and heat wave conditions. Appl. Energy, 210, 538549, https://doi.org/10.1016/j.apenergy.2017.06.091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Solanas, È., and X. Basagaña, 2019: Temporal changes in temperature-related mortality in Spain and effect of the implementation of a Heat Health Prevention Plan. Environ. Res., 169, 102113, https://doi.org/10.1016/j.envres.2018.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matzarakis, A., S. Muthers, and E. Koch, 2011: Human biometeorological evaluation of heat-related mortality in Vienna. Theor. Appl. Climatol., 105, 110, https://doi.org/10.1007/s00704-010-0372-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, W., D. Vine, and Z. Amin, 2017: Energy efficiency of housing for older citizens: Does it matter? Energy Policy, 101, 216224, https://doi.org/10.1016/j.enpol.2016.11.050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montz, B. E., T. R. Allen, and G. I. Monitz, 2011: Systemic trends in disaster vulnerability: Migrant and seasonal farm workers in North Carolina. Risks Hazards Crisis Public Policy, 2, 117, https://doi.org/10.2202/1944-4079.1070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morabito, M., F. Profili, A. Crisci, P. Francesconi, G. F. Gensini, and S. Orlandini, 2012: Heat-related mortality in the Florentine area (Italy) before and after the exceptional 2003 heat wave in Europe: An improved public health response? Int. J. Biometeor., 56, 801810, https://doi.org/10.1007/s00484-011-0481-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muthers, S., G. Laschewski, and A. Matzarakis, 2017: The summers 2003 and 2015 in south-west Germany: Heat waves and heat-related mortality in the context of climate change. Atmosphere, 8, 224, https://doi.org/10.3390/atmos8110224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nairn, J. R., and R. J. Fawcett, 2015: The excess heat factor: A metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Health, 12, 227253, https://doi.org/10.3390/ijerph120100227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nairn, J. R., B. Ostendorf, and P. Bi, 2018: Performance of excess heat factor severity as a global heatwave health impact index. Int. J. Environ. Res. Public Health, 15, 2494, https://doi.org/10.3390/ijerph15112494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Alliance to End Homelessness, 2020: State of homelessness: 2020 edition. Accessed 19 October 2020, https://endhomelessness.org/homelessness-in-america/homelessness-statistics/state-of-homelessness-2020/.

  • Ng, C. F. S., K. Ueda, M. Ono, H. Nitta, and A. Takami, 2014: Characterizing the effect of summer temperature on heatstroke-related emergency ambulance dispatches in the Kanto area of Japan. Int. J. Biometeor., 58, 941948, https://doi.org/10.1007/s00484-013-0677-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitschke, M., G. R. Tucker, A. L. Hansen, S. Williams, Y. Zhang, and P. Bi, 2011: Impact of two recent extreme heat episodes on morbidity and mortality in Adelaide, South Australia: A case-series analysis. Environ. Health, 10, 42, https://doi.org/10.1186/1476-069X-10-42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordio, F., A. Zanobetti, E. Colicino, I. Kloog, and J. Schwartz, 2015: Changing patterns of the temperature–mortality association by time and location in the US, and implications for climate change. Environ. Int., 81, 8086, https://doi.org/10.1016/j.envint.2015.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, M. S., R. Carter, J. K. Kish, C. J. Gronlund, J. L. White-Newsome, X. Manarolla, A. Zanobetti, and J. D. Schwartz, 2009: Preventing heat-related morbidity and mortality: new approaches in changing climate. Maturitas, 64, 98103, https://doi.org/10.1016/j.maturitas.2009.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palecki, M. A., S. A. Changnon, and K. E. Kunkel, 2001: The nature and impacts of the July 1999 heat wave in the midwestern United States: Learning from the lessons of 1995. Bull. Amer. Meteor. Soc., 82, 13531367, https://doi.org/10.1175/1520-0477(2001)082<1353:TNAIOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pew Research Center, 2019: Estimates of U.S. unauthorized immigrant population, by metro area, 2016 and 2007. Accessed 25 June 2020, https://www.pewresearch.org/hispanic/interactives/unauthorized-immigrants-by-metro-area-table/.

  • Pradhan, B., T. Kjellstrom, D. Atar, P. Sharma, B. Kayastha, G. Bhandari, and P. K. Pradhan, 2019: Heat stress impacts on cardiac mortality in Nepali migrant workers in Qatar. Cardiology, 143, 3748, https://doi.org/10.1159/000500853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putnam, H., D. M. Hondula, A. Urban, V. Berisha, P. Iñiguez, and M. Roach, 2018: It’s not the heat, it’s the vulnerability: Attribution of the 2016 spike in heat-associated deaths in Maricopa County, Arizona. Environ. Res. Lett., 13, 094022, https://doi.org/10.1088/1748-9326/aadb44.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, C. E., M. S. O’Neill, C. J. Gronlund, S. J. Brines, D. G. Brown, A. V. Diez-Roux, and J. Schwartz, 2009: Mapping community determinants of heat vulnerability. Environ. Health Perspect., 117, 17301736, https://doi.org/10.1289/ehp.0900683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rey, G., E. Jougla, A. Fouillet, G. Pavillon, P. Bessemoulin, P. Frayssinet, J. Clavel, and D. Hemon, 2007: The impact of major heat waves on all-cause and cause-specific mortality in France from 1971 to 2003. Int. Arch. Occup. Environ. Health, 80, 615626, https://doi.org/10.1007/s00420-007-0173-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenthal, J. K., P. L. Kinney, and K. B. Metzger, 2014: Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. Health Place, 30, 4560, https://doi.org/10.1016/j.healthplace.2014.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Royé, D., R. Codesido, A. Tobías, and M. Taracido, 2020: Heat wave intensity and daily mortality in four of the largest cities of Spain. Environ. Res., 182, 109027, https://doi.org/10.1016/j.envres.2019.109027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, M., K. Arbuthnott, S. Kovats, and S. Hajat, 2017: The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review. PLOS ONE, 12, e0180369, https://doi.org/10.1371/journal.pone.0180369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scortichini, M., and Coauthors, 2018: The inter-annual variability of heat-related mortality in nine European cities (1990–2010). Environ. Health, 17, 66, https://doi.org/10.1186/s12940-018-0411-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and M. J. Allen, 2015: Changes in the frequency and intensity of extreme temperature events and human health concerns. Curr. Climate Change Rep., 1, 155162, https://doi.org/10.1007/s40641-015-0017-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and P. G. Dixon, 2017: Spatiotemporal trends in human vulnerability and adaptation to heat across the United States. Anthropocene, 20, 6173, https://doi.org/10.1016/j.ancene.2016.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and M. J. Allen, 2018: Temporal trends in human vulnerability to excessive heat. Environ. Res. Lett., 13, 043001, https://doi.org/10.1088/1748-9326/aab214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., C. C. Lee, and M. J. Allen, 2019: The mortality response to absolute and relative temperature extremes. Int. J. Environ. Res. Public Health, 16, 1493, https://doi.org/10.3390/ijerph16091493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. K., and M. House, 2006: Snowbirds, sunbirds, and stayers: Seasonal migration of elderly adults in Florida. J. Gerontol., 61B, S232S2S9, https://doi.org/10.1093/geronb/61.5.S232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. T., B. F. Zaitchik, and J. M. Gohlke, 2013: Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118, 811825, https://doi.org/10.1007/s10584-012-0659-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spangler, K. R., and G. A. Wellenius, 2020: Spatial patterns of recent US summertime heat trends: Implications for heat sensitivity and health adaptations. Environ. Res. Commun., 2, 035002, https://doi.org/10.1088/2515-7620/ab7abb.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1984: A universal scale of apparent temperature. J. Climate Appl. Meteor., 23, 16741687, https://doi.org/10.1175/1520-0450(1984)023<1674:AUSOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tirado, S., and L. Jiménez Meneses, 2016: Energy poverty, crisis and austerity in Spain. People Place Policy, 10, 4256, https://doi.org/10.3351/ppp.0010.0001.0004.

    • Search Google Scholar
    • Export Citation
  • Urban, A., H. Hanzlíková, J. Kyselý, and E. Plavcová, 2017: Impacts of the 2015 heat waves on mortality in the Czech Republic—A comparison with previous heat waves. Int. J. Environ. Res. Public Health, 14, 1562, https://doi.org/10.3390/ijerph14121562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urban, A., D. M. Hondula, H. Hanzlíková, and J. Kyselý, 2019: The predictability of heat-related mortality in Prague, Czech Republic, during summer 2015—A comparison of selected thermal indices. Int. J. Biometeor., 63, 535548, https://doi.org/10.1007/s00484-019-01684-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Energy Information Administration, 2015: What’s new in how we use energy at home. U.S. Department of Energy Rep., 19 pp., https://www.eia.gov/consumption/residential/reports/2015/overview/pdf/whatsnew_home_energy_use.pdf.

  • Vicedo-Cabrera, A. M., and Coauthors, 2018: A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate. Environ. Int., 111, 239246, https://doi.org/10.1016/j.envint.2017.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wondmagegn, B. Y., J. Xiang, S. Williams, D. Pisaniello, and P. Bi, 2019: What do we know about the healthcare costs of extreme heat exposure? A comprehensive literature review. Sci. Total Environ., 657, 608618, https://doi.org/10.1016/j.scitotenv.2018.11.479.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 408 408 61
Full Text Views 32 32 5
PDF Downloads 42 42 5

Recent Trends in Heat-Related Mortality in the United States: An Update through 2018

View More View Less
  • 1 Department of Geography, Kent State University, Kent, Ohio
  • 2 Werth College of Science, Technology, and Mathematics, Fort Hays State University, Hays, Kansas
  • 3 Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York
  • 4 Department of Political Science and Geography, Old Dominion University, Norfolk, Virginia
© Get Permissions
Restricted access

Abstract

Much research has shown a general decrease in the negative health response to extreme heat events in recent decades. With a society that is growing older, and a climate that is warming, whether this trend can continue is an open question. Using eight additional years of mortality data, we extend our previous research to explore trends in heat-related mortality across the United States. For the period 1975–2018, we examined the mortality associated with extreme-heat-event days across the 107 largest metropolitan areas. Mortality response was assessed over a cumulative 10-day lag period following events that were defined using thresholds of the excess heat factor, using a distributed-lag nonlinear model. We analyzed total mortality and subsets of age and sex. Our results show that in the past decade there is heterogeneity in the trends of heat-related human mortality. The decrease in heat vulnerability continues among those 65 and older across most of the country, which may be associated with improved messaging and increased awareness. These decreases are offset in many locations by an increase in mortality among men 45–64 (+1.3 deaths per year), particularly across parts of the southern and southwestern United States. As heat-warning messaging broadly identifies the elderly as the most vulnerable group, the results here suggest that differences in risk perception may play a role. Further, an increase in the number of heat events over the past decade across the United States may have contributed to the end of a decades-long downward trend in the estimated number of heat-related fatalities.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-20-0083.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Scott Sheridan, ssherid1@kent.edu

Abstract

Much research has shown a general decrease in the negative health response to extreme heat events in recent decades. With a society that is growing older, and a climate that is warming, whether this trend can continue is an open question. Using eight additional years of mortality data, we extend our previous research to explore trends in heat-related mortality across the United States. For the period 1975–2018, we examined the mortality associated with extreme-heat-event days across the 107 largest metropolitan areas. Mortality response was assessed over a cumulative 10-day lag period following events that were defined using thresholds of the excess heat factor, using a distributed-lag nonlinear model. We analyzed total mortality and subsets of age and sex. Our results show that in the past decade there is heterogeneity in the trends of heat-related human mortality. The decrease in heat vulnerability continues among those 65 and older across most of the country, which may be associated with improved messaging and increased awareness. These decreases are offset in many locations by an increase in mortality among men 45–64 (+1.3 deaths per year), particularly across parts of the southern and southwestern United States. As heat-warning messaging broadly identifies the elderly as the most vulnerable group, the results here suggest that differences in risk perception may play a role. Further, an increase in the number of heat events over the past decade across the United States may have contributed to the end of a decades-long downward trend in the estimated number of heat-related fatalities.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-20-0083.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Scott Sheridan, ssherid1@kent.edu
Save