Documentation of a Systematic Bias in the Aviation Model's Forecast of the Atlantic Tropical Upper-Tropospheric Trough: Implications for Tropical Cyclone Forecasting

Patrick J. Fitzpatrick Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Patrick J. Fitzpatrick in
Current site
Google Scholar
PubMed
Close
,
John A. Knaff Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by John A. Knaff in
Current site
Google Scholar
PubMed
Close
,
Christopher W. Landsea Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Christopher W. Landsea in
Current site
Google Scholar
PubMed
Close
, and
Steven V. Finley Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven V. Finley in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

This study uncovers what appears to be a systematic bias in the National Meteorological Center's aviation (AVN) model at 200 mb over the Caribbean Sea. In general, the 48-h forecast in the vicinity of the Tropical Upper Tropospheric Trough (TUTT) underpredicts the magnitude of the westerly 200-mb winds on the order of 5-10 m s−1. This unrealistic weakening of the TUTT and associated cold lows by the AVN results in erroneous values of the vertical (850-200 mb) wind shear. These systematic errors are in the same order of magnitude as the minimum shear threshold for tropical cyclone genesis and development. Thus, 48-h tropical cyclone formation and intensity forecasts based upon the AVN model are often incorrect in the vicinity of the TUTT. Knowing the correct future upper-wind regime is also crucial for track forecasting of more intense tropical cyclones, especially in cases of recurvature.

It is shown that simple persistence or climatology of the 200-mb winds south of a TUTT axis is superior to the AVN model's 48-h forecast. Until this bias in the AVN is successfully removed, the tropical cyclone forecaster for the Atlantic basin should be aware of this systematic error and make subjective changes in his/her forecasts. For 200-mb west winds greater than or equal to 10 m s−1, forecasts based on persistence are best, while for west winds less than 10 m s−1, half climatology and half persistence is the preferable predictor. If the TUTT is weak such that 200-mb easterly winds occur, climatology tends to be the best predictor as it nudges the forecast back to a normal westerly wind regime.

Abstract

This study uncovers what appears to be a systematic bias in the National Meteorological Center's aviation (AVN) model at 200 mb over the Caribbean Sea. In general, the 48-h forecast in the vicinity of the Tropical Upper Tropospheric Trough (TUTT) underpredicts the magnitude of the westerly 200-mb winds on the order of 5-10 m s−1. This unrealistic weakening of the TUTT and associated cold lows by the AVN results in erroneous values of the vertical (850-200 mb) wind shear. These systematic errors are in the same order of magnitude as the minimum shear threshold for tropical cyclone genesis and development. Thus, 48-h tropical cyclone formation and intensity forecasts based upon the AVN model are often incorrect in the vicinity of the TUTT. Knowing the correct future upper-wind regime is also crucial for track forecasting of more intense tropical cyclones, especially in cases of recurvature.

It is shown that simple persistence or climatology of the 200-mb winds south of a TUTT axis is superior to the AVN model's 48-h forecast. Until this bias in the AVN is successfully removed, the tropical cyclone forecaster for the Atlantic basin should be aware of this systematic error and make subjective changes in his/her forecasts. For 200-mb west winds greater than or equal to 10 m s−1, forecasts based on persistence are best, while for west winds less than 10 m s−1, half climatology and half persistence is the preferable predictor. If the TUTT is weak such that 200-mb easterly winds occur, climatology tends to be the best predictor as it nudges the forecast back to a normal westerly wind regime.

Save